当前位置:首页 > 初三中考数学图形的相似与位似
【解答】解:∵正六边形ABCDEF的边长为3, ∴AB=BC=CD=DE=EF=FA=3, ∴的长=3×6﹣3﹣3═12,
∴扇形AFB(阴影部分)的面积=×12×3=18. 故答案为:18.
11.(山东省聊城市,3分)如图,已知圆锥的高为圆锥的侧面积为 2π .
,高所在直线与母线的夹角为30°,
【考点】圆锥的计算. 【专题】计算题.
【分析】先利用三角函数计算出BO,再利用勾股定理计算出AB,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算圆锥的侧面积. 【解答】解:如图,∠BAO=30°,AO=在Rt△ABO中,∵tan∠BAO=∴BO=∴AB=
,
,
tan30°=1,即圆锥的底面圆的半径为1,
=2,即圆锥的母线长为2,
∴圆锥的侧面积=?2π?1?2=2π. 故答案为2π.
【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
12.(·江苏苏州)如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为
.
【考点】切线的性质;圆周角定理;扇形面积的计算.
【分析】连接OC,可求得△OCD和扇形OCB的面积,进而可求出图中阴影部分的面积.
【解答】解:连接OC,
∵过点C的切线交AB的延长线于点D, ∴OC⊥CD, ∴∠OCD=90°,
即∠D+∠COD=90°, ∵AO=CO,
∴∠A=∠ACO, ∴∠COD=2∠A, ∵∠A=∠D,
∴∠COD=2∠D, ∴3∠D=90°, ∴∠D=30°, ∴∠COD=60° ∵CD=3, ∴OC=3×
=
,
×3×.
﹣
=
,
∴阴影部分的面积=故答案为:
13.(·江苏泰州)如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为 π .
【考点】扇形面积的计算.
【分析】通过解直角三角形可求出∠AOB=30°,∠COD=60°,从而可求出∠AOC=150°,再通过证三角形全等找出S阴影=S扇形OAC,套入扇形的面积公式即可得出结论. 【解答】解:在Rt△ABO中,∠ABO=90°,OA=2,AB=1, ∴OB=
=
,sin∠AOB=
=,∠AOB=30°.
同理,可得出:OD=1,∠COD=60°. ∴∠AOC=∠AOB+=30°+180°﹣60°=150°. 在△AOB和△OCD中,有∴△AOB≌△OCD(SSS). ∴S阴影=S扇形OAC. ∴S扇形OAC=故答案为:π.
14. (兰州,12,4分)如图,用一个半径为 5cm 的定滑轮带动重物上升,滑轮上一点 P 旋转了 108o ,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了() (A)πcm (B) 2πcm (C) 3πcm (D) 5πcm
πR2=
π×22=π.
,
【答案】:C 【解析】:利用弧长公式即可求解 【考点】:有关圆的计算
15.(福州,16,4分)如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上 = r下.(填“<”“=”“<”)
【考点】弧长的计算.
【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可. 【解答】解:如图,r上=r下.
故答案为=.
【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=
(弧长为
l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.
18、(广东,14,4分)如图5,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中AC的长是 cm;(结果保留?)
?
答案:10?
考点:勾股定理,圆锥的侧面展开图,弧长公式。
解析:由勾股定理,得圆锥的底面半径为:13?12=5, 扇形的弧长=圆锥的底面圆周长=2??5?10?
16.(安徽,13,5分)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为 .
22
共分享92篇相关文档