当前位置:首页 > (word完整版)二次函数知识点总结和题型总结,推荐文档
例题:函数y=a(x-h)2的图象与性质 1.填表:
抛物线 开口方向 对称轴 2y??3?x?2? y?1?x?3?2 2顶点坐标
1
2.试说明函数y= (x-3)2 的图象特点及性质(开口、对称轴、顶点坐标、增
2
减性、最值)。
1
3.二次函数y=a(x-h)2的图象如图:已知a = ,OA=OC,试求该抛物线的解
2
析式。
二次函数的增减性
1.二次函数y=3x2-6x+5,当x>1时,y随x的增大而 ;当x<1时,y 随x的增大而 ;当x=1时,函数有最 值是 。 2.已知函数y=4x2-mx+5,当x> -2时,y随x的增大而增大;当x< -2时,y 随x的增大而减少;则x=1时,y的值为 。
3.已知二次函数y=x2-(m+1)x+1,当x≥1时,y随x的增大而增大,则m的取值范围是 .
15
4.已知二次函数y=- x2+3x+ 的图象上有三点A(x1,y1),B(x2,y2),C(x3,y3)且
223 七、二次函数解析式的表示方法 1. 一般式:y?ax2?bx?c(a,b,c为常数,a?0); 2. 顶点式:y?a(x?h)2?k(a,h,k为常数,a?0); 3. 两根式:y?a(x?x1)(x?x2)(a?0,x1,x2是抛物线与x轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函 数都可以写成交点式,只有抛物线与x轴有交点,即b2?4ac?0时,抛物线 的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a 二次函数y?ax2?bx?c中,a作为二次项系数,显然a?0. ⑴ 当a?0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大; ⑵ 当a?0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大. 总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小. 2. 一次项系数b 在二次项系数a确定的前提下,b决定了抛物线的对称轴. ⑴ 在a?0的前提下, 当b?0时,?当b?0时,?当b?0时,?b?0,即抛物线的对称轴在y轴左侧; 2ab?0,即抛物线的对称轴就是y轴; 2ab?0,即抛物线对称轴在y轴的右侧. 2ab?0,即抛物线的对称轴在y轴右侧; 2ab?0,即抛物线的对称轴就是y轴; 2ab?0,即抛物线对称轴在y轴的左侧. 2a⑵ 在a?0的前提下,结论刚好与上述相反,即 当b?0时,?当b?0时,?当b?0时,?总结起来,在a确定的前提下,b决定了抛物线对称轴的位置. bab的符号的判定:对称轴x??在y轴左边则ab?0,在y轴的右侧则 2aab?0,概括的说就是“左同右异” 总结: 3. 常数项c ⑴ 当c?0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正; ⑵ 当c?0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0; ⑶ 当c?0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负. 总结起来,c决定了抛物线与y轴交点的位置. 总之,只要a,b,c都确定,那么这条抛物线就是唯一确定的. 例题:函数的图象特征与a、b、c的关系 1.已知抛物线y=ax2+bx+c的图象如右图所示,则a、b、c的符号为( ) A.a>0,b>0,c>0 B.a>0,b>0,c=0 C.a>0,b<0,c=0 D.a>0,b<0,c<0 2 2.已知抛物线y=ax+bx+c的图象2如图所示,则下列结论正确的是( ) A.a+b+c> 0 B.b> -2a C.a-b+c> 0 D.c< 0 3.抛物线y=ax2+bx+c中,b=4a,它的图象如图3,有以下结论: ①c>0; ②a+b+c> 0 ③a-b+c> 0 ④b2-4ac<0 ⑤abc< 0 ;其中正确的为( ) A.①② B.①④ C.①②③ D.①③⑤ 4.当b<0是一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系内的图象可能是( ) 5.已知二次函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象可能是图所示的( ) y yyy O1x1xO1xO1Ox DA BC 6.二次函数y=ax2+bx+c的图象如图5所示,那么abc,b2-4ac, 2a+b, a+b+c 四个代数式中,值为正数的有( ) A.4个 B.3个 C.2个 D.1个 c2 7.在同一坐标系中,函数y= ax+c与y= (a x A B C D k 8.反比例函数y= 的图象在一、三象限,则二次函数y=kx2-k2x-1c的图象大 x 致为图中的( ) A B C D k 9.反比例函数y= 中,当x> 0时,y随x的增大而增大,则二次函数y=kx2+2kx x 的图象大致为图中的( ) A B C D 二次函数解析式的确定: 根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况: 1. 已知抛物线上三点的坐标,一般选用一般式; 2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; 3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式; 4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 例题:函数解析式的求法 一、已知抛物线上任意三点时,通常设解析式为一般式y=ax2+bx+c,然后解三元方程组求解; 1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二 次函数的解析式。
共分享92篇相关文档