云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > (word完整版)二次函数知识点总结和题型总结,推荐文档

(word完整版)二次函数知识点总结和题型总结,推荐文档

  • 62 次阅读
  • 3 次下载
  • 2025/5/25 17:03:49

二次函数知识点总结和题型总结

一、二次函数概念:

2b,c是常数,a?0)的函 1.二次函数的概念:一般地,形如y?ax?bx?c(a, 数,叫做二次函数。

这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式

2y?ax?bx?c的结构特征: 2. 二次函数

⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.

b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,例题:

例1、已知函数y=(m-1)xm2 +1+5x-3是二次函数,求m的值。

练习、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围 为 。 二、二次函数的基本形式

1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。

a的符号 2开口方向 顶点坐标 对称轴 性质 x?0时,y随x的增大而增大;x?0时,a?0 向上 ?0,0? y轴 y随x的增大而减小;x?0时,y有最小值0. x?0时,y随x的增大而减小;x?0时,a?0 向下 ?0,0? y轴 y随x的增大而增大;x?0时,y有最大值0. 2. y?ax2?c的性质: 上加下减。

a的符号 开口方向 顶点坐标 对称轴 性质 x?0时,y随x的增大而增大;x?0时,a?0 向上 ?0,c? y轴 y随x的增大而减小;x?0时,y有最小值c. x?0时,y随x的增大而减小;x?0时,a?0 向下 ?0,c? y轴 y随x的增大而增大;x?0时,y有最大值c. 3. y?a?x?h?的性质:

左加右减。

a的符号 2开口方向 顶点坐标 对称轴 性质 x?h时,y随x的增大而增大;x?h时,a?0 向上 ?h,0? X=h y随x的增大而减小;x?h时,y有最小值0. x?h时,y随x的增大而减小;x?h时,a?0 向下 ?h,0? X=h y随x的增大而增大;x?h时,y有最大值0. 4. y?a?x?h??k的性质:

a的符号 2开口方向 顶点坐标 对称轴 性质 x?h时,y随x的增大而增大;x?h时,a?0 向上 ?h,k? X=h y随x的增大而减小;x?h时,y有最小值k. x?h时,y随x的增大而减小;x?h时,a?0 向下 ?h,k? X=h y随x的增大而增大;x?h时,y有最大值k. 二次函数的对称轴、顶点、最值 (技法:如果解析式为顶点式y=a(x-h)2+k,则最值为k;如果解析式为一般式

4ac-b22

y=ax+bx+c则最值为 )

4a

1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为 。 2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b= ,c= . 3.抛物线y=x2+3x的顶点在( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

4.若抛物线y=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( ) A.13 B.10 C.15 D.14

5.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( ) A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴 C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴 6.已知二次函数y=mx2+(m-1)x+m-1有最小值为0,则m= 。

三、二次函数图象的平移 1. 平移步骤:

方法一:⑴ 将抛物线解析式转化成顶点式y?a?x?h??k,确定其顶点坐标

2?h,k?;

⑵ 保持抛物线y?ax2的形状不变,将其顶点平移到?h,k?处,具体平移方法如下:

向上(k>0)【或向下(k<0)】平移|k|个单位y=ax2y=ax2+k

向右(h>0)【或左(h<0)】向右(h>0)【或左(h<0)】向右(h>0)【或左(h<0)】平移 |k|个单位 平移|k|个单位平移|k|个单位向上(k>0)【或下(k<0)】

平移|k|个单位 y=a(x-h)2y=a(x-h)2+k向上(k>0)【或下(k<0)】平移|k|个单位2. 平移规律

在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:

⑴y?ax2?bx?c沿y轴平移:向上(下)平移m个单位,y?ax2?bx?c变成

y?ax2?bx?c?m(或y?ax2?bx?c?m)

⑵y?ax2?bx?c沿轴平移:向左(右)平移m个单位,y?ax2?bx?c变成

y?a(x?m)2?b(x?m)?c(或y?a(x?m)2?b(x?m)?c)

函数y=ax2+bx+c的图象和性质例题:

1.抛物线y=x2+4x+9的对称轴是 。 2.抛物线y=2x2-12x+25的开口方向是 ,顶点坐标是 。 3.通过配方,写出下列函数的开口方向、对称轴和顶点坐标:

12122

(1)y= x-2x+1 ; (2)y=-3x+8x-2; (3)y=- x+x-4

24

4、把抛物线y=x2+bx+c的图象向右平移3个单位,在向下平移2个单位,所得 图象的解析式是y=x2-3x+5,试求b、c的值。 5、把抛物线y=-2x2+4x+1沿坐标轴先向左平移2个单位,再向上平移3个单位, 问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由。

四、二次函数y?a?x?h??k与y?ax2?bx?c的比较

从解析式上看,y?a?x?h??k与y?ax2?bx?c是两种不同的表达形式,后者

b?4ac?b2b4ac?b2?通过配方可以得到前者,即y?a?x???,其中h??,. k?2a4a2a4a??222五、二次函数y?ax2?bx?c图象的画法

五点绘图法:利用配方法将二次函数y?ax2?bx?c化为顶点式y?a(x?h)2?k,

确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点

c?、以及?0,c?关于画图.一般我们选取的五点为:顶点、与y轴的交点?0,0?,?x2,0?(若与x轴没有交点,对称轴对称的点?2h,c?、与x轴的交点?x1,则取两组关于对称轴对称的点).

画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.

六、二次函数y?ax2?bx?c的性质

?b4ac?b2?b 1. 当a?0时,抛物线开口向上,对称轴为x??,顶点坐标为??, ?.2a4a2a??当x??bb时,y随x的增大而减小;当x??时,y随x的增大而增大;当2a2a4ac?b2b. x??时,y有最小值

4a2a 2. 当a?0时,抛物线开口向下,对称轴为x??b,顶点坐标为2a?b4ac?b2?bb时,y随x的增大而增大;当x??时,y随x的增??,?.当x??4a?2a2a?2a4ac?b2b大而减小;当x??时,y有最大值.

4a2a

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

二次函数知识点总结和题型总结 一、二次函数概念: 2b,c是常数,a?0)的函 1.二次函数的概念:一般地,形如y?ax?bx?c(a, 数,叫做二次函数。 这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式 2y?ax?bx?c的结构特征: 2. 二次函数⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,例题: 例1、已知函数y=(m-1)xm2 +1+5x-3是二次函数,求m的值。 练习、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围 为 。 二、二次函

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com