云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 本科毕业论文-—基于神经网络的非线性自适应控制研究

本科毕业论文-—基于神经网络的非线性自适应控制研究

  • 62 次阅读
  • 3 次下载
  • 2025/5/1 0:27:45

青岛科技大学本科毕业设计(论文)

PSE)。这种方法利用统计分析,用表达式表示网络的推广性能.该表达式是训练集的性能、系统中自由参数的个数、训练集大小等的函数。

J.Moody针对一个利用复杂性正则化(Complexity Regularization)项来训练的系统,提出后了广义预测误差(Generalized Predication Error. OPE)方法。由于所州的复杂性正则化项,有效参数比赛际参数数口少得多。

Freeman等从理论上分析了RBF网络的推广能力的问厝。通过对推广能力与训练数据对、最优训练参数及基函数的相互作用的分析,得出了以下结论:

1、当权值矢量完全可以用学习教导出时.RBF的推广能力与所训练的数据数成正比。

2、为了达到RBF网络较好的推广能力,网络的训练参数也需要最优的设置,基函数交叠强的RBF网络具有较好的推广能力,并有利于提高网络的学习速度。这些结论对实际应用具有较好的指导作用。

4.5 RBF神经网络逼近特性

从上面的描述我们可以知道,RBF神经两络具有最佳逼近特性,任意给出一个未知的非线性函数f,总可以得到组权值使得RBF网络对于厂的逼近优于所有其它可能的选择。下面,利用MATLAB软件来仿真RBF神经网络的逼近特性。所做的工作是对于同一个RBF神经网络,选择不同的连续函数,来模拟仿真其逼近特性.在网络设计中,采用高斯函数作为基函数,误差指标设为0.01。

1、逼近函数T?sin(X?)?cos(2X?)?X2,仿真结果如图4.2和图4.3所示

41

基于神经网络的非线性自适应控制研究

图4.2 逼近函数T?sin(X?)?cos(2X?)?X2

图4.3逼近误差性能

2、逼近函数T?sin(2X?)?cos(X?),仿真结果如图4.4和图4.5所示

42

青岛科技大学本科毕业设计(论文)

图4.4 逼近函数T?sin(2X?)?cos(X?)

图4.5逼近误差性能

从上面的仿真结果我们可以比较看出,同一个RBF神经网络,对不同的连

43

基于神经网络的非线性自适应控制研究

续函数,其逼近效果非常好,逼近误差也在一定的时间内能达到了期望的要求,这也说明了该RBF神经网络具有比较好的推广能力。

44

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

青岛科技大学本科毕业设计(论文) PSE)。这种方法利用统计分析,用表达式表示网络的推广性能.该表达式是训练集的性能、系统中自由参数的个数、训练集大小等的函数。 J.Moody针对一个利用复杂性正则化(Complexity Regularization)项来训练的系统,提出后了广义预测误差(Generalized Predication Error. OPE)方法。由于所州的复杂性正则化项,有效参数比赛际参数数口少得多。 Freeman等从理论上分析了RBF网络的推广能力的问厝。通过对推广能力与训练数据对、最优训练参数及基函数的相互作用的分析,得出了以下结论: 1、当权值矢量完全可以用学习教导出时.RBF的推广能力与所训练的数据数成正比。 2、为了达到RBF网络较好的推广能力,网络的训练参数也需要最优的设置,基函数

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com