云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 自动控制理论第四版课后习题详细解答答案(夏德钤翁贻方版)

自动控制理论第四版课后习题详细解答答案(夏德钤翁贻方版)

  • 62 次阅读
  • 3 次下载
  • 2025/6/2 8:51:11

如图,相角裕度和增益裕度都为正,系统稳定。 (2)G(j?)H(j?)?2

(j?)2(0.1j??1)(10j??1)解:命令如下: >> s=tf('s');

>> G=2/((s^2)**s+1)*(10*s+1)); >> margin(G);

如图,增益裕度无穷大,相角裕度-83,系统不稳定。

5-7 已知最小相位系统的开环对数幅频特性的渐近线如图所示,试写出系统的开环传递函数,并汇出对应的对数相频曲线的大致图形。 (a) 解:低频段由20lgK?10得,K?10

?=2s?1处,斜率下降20dB/dec,对应惯性环节

10。

0.5s?11。

0.5s?1由上可得,传递函数G?s??相频特性?(?)??arctg0.5?。 汇出系统的相频特性曲线如下图所示。

(b) 解:低频段斜率为-20dB/dec,对应积分环节。

1s?=2s?1处,斜率下降20dB/dec,对应惯性环节

1。

0.5s?1?1在剪切频率?c?2.8s处,

K?c1?0.5?c22?1,解得K?4.8

传递函数为:G(s)?4.8

s(0.5s?1)(c) 低频段斜率为-40dB/dec,为两个积分环节的叠加

1; s2?1?0.5s?1处,斜率上升20dB/dec,对应一阶微分环节2s?1; ?2?2s?1处,斜率下降20dB/dec,对应一阶惯性环节

传递函数形式为:G(s)?1

0.5s?1K(2s?1) 2s(0.5s?1)2图中所示Bode图的低频段可用传递函数为K/s来描述,则其幅频特性为K/?。取对数,得L1(?)?20lgK?20lg?。

同理,Bode图中斜率为-20dB/dec的中频段可用K1/s来描述,则其对数幅频特性为

22L2(?)?20lgK1?20lg?。由图有,L2(?c)?0dB,则有K1??c。

再看图,由L1(?1)?L2(?1)可解得K??1??c?0.5 综上,系统开环传递函数为G(s)?0.5(2s?1) 2s(0.5s?1)(参考李友善做法)

系统相频特性:?(?)??180?arctg2??arctg0.5? 曲线如下:

5-8 设系统开环频率特性的极坐标图如图5-T-2所示,试判断闭环系统的稳定性。 (a) 解:系统开环稳定,奈氏图包围(-1,0j)点一次,P≠0,所以闭环系统不稳定。 (b) 解:正负穿越各一次,P=2(N+-N-)=0,闭环系统稳定。

(c) 闭环系统稳定。 (d) 闭环系统稳定。

2e??s?5-9根据系统的开环传递函数G(s)H(s)绘制系统的伯德图,并确s(1?s)(1?0.5s)定能使系统稳定之最大?值范围。

?1解:经误差修正后的伯德图如图所示。从伯德图可见系统的剪切频率?c?1.15s,??0时,

在剪切频率处系统的相角为

?(?c)??90??arctg?c?arctg0.5?c??168.9?

由上式,滞后环节在剪切频频处最大率可有11.1的相角滞后,即

?180????11.1?

解得??0.1686s。因此使系统稳定的最大?值范围为0???0.1686s。

5-10 已知系统的开环传递函数为

G(s)H(s)?K

s(1?s)(1?3s)试用伯德图方法确定系统稳定的临界增益K值。 解:由G?s?H?s??K1知两个转折频率?1?rad/s,?2?1rad/s。令

s?1?s??1?3s?3

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

如图,相角裕度和增益裕度都为正,系统稳定。 (2)G(j?)H(j?)?2 (j?)2(0.1j??1)(10j??1)解:命令如下: >> s=tf('s'); >> G=2/((s^2)**s+1)*(10*s+1)); >> margin(G); 如图,增益裕度无穷大,相角裕度-83,系统不稳定。 5-7 已知最小相位系统的开环对数幅频特性的渐近线如图所示,试写出系统的开环传递函数,并汇出对应的对数相频曲线的大致图形。 (a) 解:低频段由20lgK?10得,K?10 ?=2s?1处,斜率下降20dB/dec,对应惯性环节10。 0.5s?11。 0.5s?1由上可得,传递函数G?s??相频特性?(?)??arctg0.

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com