当前位置:首页 > 概率论与数理统计徐雅静版课后题答案1--7章
17
f'Y(y)?FY(y)?fx(?y)?fx(y).
5. 解:随机变量X的分布函数为
?0 , x?1 F(x)???3x-1, 1?x?8,显然F(x)?[0,1],
??1, x?8 FY(y)?P{Y?y}?P{F(X)?y},
当y?0时,{F(X)?y}是不可能事件,知FY(y)?0,
当0?y?1时,F)?P{3X?1?y}?P{X?(1?y)3Y(y}?y,
当y?1时,{F(X)?y}是必然事件,知FY(y)?1,
?0 , y?即 F?0Y(y)??y, 0?y?1。 ??1, y?16. (1)FY1(y)?P{Y1?y}?P{2X?1?y}?P{X?y-12} y?1当y?12?0时,即y?1时,Fy-1Y1(y)?P{X?2}??2-?0dx?0, y?11?y当y?1?0时,即y>1时,Fy-1Y221(y)?P{X?2}??20e?xdx?1-e,所以
?f?11?y2,y?1Y1(y)???2e;?0,y?1,其他
(2)FY2(y)?P{Y2?y}?P{eX?y},
当y?0时,{eX?y}为不可能事件,则FY2(y)?P{eX?y}?0,
当0?y?1时,lny?0,则F?P{eXY2(y)?y}?P?X?lny???lny??0dx?0, 当y?1时,lny?0,则FY2(y)?P?X?lny???lnyx0e?dx?1?1y, 根据fY2(y)?FY?2(y)得
?0, f? y?1Y2(y)??1;??y2,y?1
(3)F2Y3(y)?P{Y3?y}?P{X?y},
当y?0时,F)?P{X2Y3(y?y}?0,
当y?0时,FY3(y)?P{X2?y}?P??y?X?y???ye?xdx?1?e?y0,
17
18
?0, y?0??y所以 fY3(y)??e;
,y?0?2y??2e?2x,x?07. (1) 证明:由题意知f(x)??。
?0,x?0?2XY1?e?2x,FY(y)?P{Y?y}?P{e?y}, 11(y)?0, (?0即fY当y?0时,FY1y)1当0?y ?1时,FY1(y)?P{e当y?1时,FY1(y)?P?X?故有fY1(y)???2X???lny???2x?y}?P?X?????lny2edx?y,
2??2?????lny??2x???02edx?1, 2??1,0?y?1,可以看出Y1服从区间(0,1)均匀分布;
0, ?(2) Y2?e?2x,FY2(y)?P{Y21?y}?P{1-e?2X?y}?P{e?2X?1-y} 当1?y?0时,FY2(y)?P{e?2x?1-y}?1, 当0?1?y?1时,
?ln(1?y)2FY((y))?P{e2?2X?ln(1?y)???1-y}?P?X????02???2X2e?2xdx?y,
?ln(1?y)2 当1?y?1时,FY2(y)?P{e 由以上结果,易知fY2(y)??
?ln(1?y)???1-y}?P?X??????2??0dx?0,
?1,0?y?1,可以看出Y2服从区间(0,1)均匀分布。 ?0,第三章
1解:(X,Y)取到的所有可能值为(1,1),(1,2),(2,1)由乘法公式:
P{X=1,Y=1}=P{X=1}P{Y=1|X=1|=2/3?1/2=/3 同理可求得P{X=1,Y=1}=1/3; P{X=2,Y=1}=1/3 (X,Y)的分布律用表格表示如下:
Y X 1 2 1 1/3 1/3 2 1/3 0 2 解:X,Y所有可能取到的值是0, 1, 2 18
19
(1) P{X=i, Y=j}=P{X=i}P{Y=j|X=i|= 错误!未找到引用源。, i,j=0,1,2, i+j?2 或者用表格表示如下:
Y X 0 1 2 0 3/28 9/28 3/28 1 6/28 6/28 0 2 1/28 0 0 (2)P{(X,Y)?A}=P{X+Y?1}=P{X=0, Y=0}+P{X=1,Y=0}+P{X=0,Y=0}=9/14 3 解:P(A)=1/4, 由P(B|A)=源。 由P(A|B)=
P(AB)P(AB)??1/2错误!未找到引用源。得P(AB)=1/8错误!未找到引用
P(A)1/4P(AB)?1/2得错误!未找到引用源。P(B)=1/4
P(B)(X,Y)取到的所有可能数对为(0,0),(1,0),(0,1),(1,1),则
P{X=0,Y=0}=错误!未找到引用源。)P(AB)=P(错误!未找到引用源。 错误!未找到引用源。(A)-P(B)+P(AB)=5/8 P{X=0,Y=1}=P(错误!未找到引用源。B)=P(B-A)=P(B)-P(AB)=1/8 P{X=1,Y=0}=P(A错误!未找到引用源。)=P(A-B)=P(A)-P(AB)=1/8 P{X=1,Y=1}=P(AB)=1/8 4.解:(1)由归一性知:
1=错误!未找到引用源。, 故A=4 (2)P{X=Y}=0
(3)P{X F(x,y)=错误!未找到引用源。 即F(x,y)=错误!未找到引用源。 5.解:P{X+Y?1}= 6 解:X的所有可能取值为0,1,2,Y的所有可能取值为0,1,2, 3. P{X=0,Y=0}=0.53=0.125; 、P{X=0,Y=1}=0.53=0.125 19 x?y?1??f(x,y)dxdy??1201?x?(x2?xy65 )dydx?37220 P{X=1,Y=1}=C20.5?0.5?0.25, P{X=1,Y=2}=C20.5?0.5?0.25 P{X=2,Y=2}=0.53=0.125, P{X=2,Y=3}==0.53=0.125 X,Y 的分布律可用表格表示如下: Y X 0 1 2 P.j 0.125 0 0 0.125 0.125 0 0 0.25 0.5 0.25 1 12120 1 2 3 Pi. 0.25 0.25 0 0 0.375 0.125 0.375 0.125 0.125 ?e?y,0?x?y7. 解:f(x,y)?? 其它?0,????y?x??edy,x?0?e,x?0 fX(x)??f(x,y)dy????x?0,x?0???0,x?0????y?y?edx,fY(y)??f(x,y)dx???0???0,????ye?y,??0,y?0?y?0y?0 y?0?cx2y,x2?y?18. 解:f(x,y)?? 0,x?0?(1)1???????????1?x44cf(x,y)dxdy???2cxydydx?2c?xdx? ?1x022111212所以 c=21/4 ??(2) fX(x)?????21x2(1?x4)?2112?xydy,|x|?1?,|x|?1 f(x,y)dy??4?x2??8?0,其它?0,其它???5y21?????x2ydx0?y?1?7y2fY(y)??f(x,y)dx??4?y????2??0,其它??0, 20 0?y?1 其它
共分享92篇相关文档