云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > (完整word版)2016年安徽省中考数学试卷及答案(Word解析版),推荐文档

(完整word版)2016年安徽省中考数学试卷及答案(Word解析版),推荐文档

  • 62 次阅读
  • 3 次下载
  • 2025/6/6 13:19:18

A. B.2 C. D.

【考点】点与圆的位置关系;圆周角定理.

【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题. 【解答】解:∵∠ABC=90°, ∴∠ABP+∠PBC=90°, ∵∠PAB=∠PBC,

∴∠BAP+∠ABP=90°, ∴∠APB=90°,

∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小, 在RT△BCO中,∵∠OBC=90°,BC=4,OB=3, ∴OC=

=5,

∴PC=OC=OP=5﹣3=2. ∴PC最小值为2. 故选B.

二、填空题(本大题共4小题,每小题5分,满分20分) 11.不等式x﹣2≥1的解集是 x≥3 . 【考点】解一元一次不等式.

【分析】不等式移项合并,即可确定出解集. 【解答】解:不等式x﹣2≥1, 解得:x≥3, 故答案为:x≥3

12.因式分解:a3﹣a= a(a+1)(a﹣1) . 【考点】提公因式法与公式法的综合运用.

【分析】原式提取a,再利用平方差公式分解即可. 【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1), 故答案为:a(a+1)(a﹣1)

13.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧

的长为

【考点】切线的性质;弧长的计算.

【分析】根据已知条件求出圆心角∠BOC的大小,然后利用弧长公式即可解决问题. 【解答】解:∵AB是⊙O切线, ∴AB⊥OB, ∴∠ABO=90°, ∵∠A=30°,

∴∠AOB=90°﹣∠A=60°, ∴∠BOC=120°, ∴

的长为

=

故答案为

14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:

①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG. 其中正确的是 ①③④ .(把所有正确结论的序号都选上)

【考点】相似形综合题.

【分析】由折叠性质得∠1=∠2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可计算出AF=8,所以DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)

2+22=x2

,解得x=,即ED=;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,

于是可对①进行判断;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中利用勾股定理得到y2+42=(8﹣y)

2

,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D和≠,可判断△ABG与△DEF不相似,则可对

②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断. 【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,

∴∠1=∠2,CE=FE,BF=BC=10, 在Rt△ABF中,∵AB=6,BF=10, ∴AF=

=8,

∴DF=AD﹣AF=10﹣8=2,

设EF=x,则CE=x,DE=CD﹣CE=6﹣x, 在Rt△DEF中,∵DE2+DF2=EF2, ∴(6﹣x)2+22=x2,解得x=∴ED=,

∵△ABG沿BG折叠,点A恰落在线段BF上的点H处, ∴∠3=∠4,BH=BA=6,AG=HG, ∴∠2+∠3=∠ABC=45°,所以①正确; HF=BF﹣BH=10﹣6=4,

设AG=y,则GH=y,GF=8﹣y, 在Rt△HGF中,∵GH2+HF2=GF2, ∴y2+42=(8﹣y)2,解得y=3, ∴AG=GH=3,GF=5, ∵∠A=∠D,∴

==,

=, ,

∴△ABG与△DEF不相似,所以②错误; ∵S△ABG=?6?3=9,S△FGH=?GH?HF=×3×4=6, ∴S△ABG=S△FGH,所以③正确; ∵AG+DF=3+2=5,而GF=5, ∴AG+DF=GF,所以④正确. 故答案为①③④.

三、(本大题共2小题,每小题8分,满分16分) 15.计算:(﹣2016)0+

+tan45°.

【考点】实数的运算;零指数幂;特殊角的三角函数值.

【分析】直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案. 【解答】解:(﹣2016)0+=1﹣2+1

+tan45°

=0.

16.解方程:x2﹣2x=4.

【考点】解一元二次方程-配方法;零指数幂.

【分析】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解 【解答】解:配方x2﹣2x+1=4+1 ∴(x﹣1)2=5 ∴x=1±

∴x1=1+,x2=1﹣. 四、(本大题共2小题,每小题8分,满分16分)

17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC. (1)试在图中标出点D,并画出该四边形的另两条边;

(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.

【考点】作图-平移变换. 【分析】(1)画出点B关于直线AC的对称点D即可解决问题.

(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′. 【解答】解:(1)点D以及四边形ABCD另两条边如图所示.

(2)得到的四边形A′B′C′D′如图所示.

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

A. B.2 C. D. 【考点】点与圆的位置关系;圆周角定理. 【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题. 【解答】解:∵∠ABC=90°, ∴∠ABP+∠PBC=90°, ∵∠PAB=∠PBC, ∴∠BAP+∠ABP=90°, ∴∠APB=90°, ∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小, 在RT△BCO中,∵∠OBC=90°,BC=4,OB=3, ∴OC==5, ∴PC=OC=OP=5﹣3=2. ∴PC最小值为2. 故选B. 二、填空题(本大题共4小题,每小题5分,满分20分) 11.不等式x﹣2≥1的解集是 x≥3 . 【考点】解一

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com