云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2020年中考数学一轮复习培优训练:《四边形》及答案

2020年中考数学一轮复习培优训练:《四边形》及答案

  • 62 次阅读
  • 3 次下载
  • 2025/7/4 8:32:07

10.解:(1)∵

+(2b﹣a﹣c)2+|b﹣c|=0,

∴a=4,b=c,2b﹣a﹣c=0, ∴b=4,c=4,

∴点A(4,0),点B(4,4),点C(0,4);

(2)如图1,将△BCD绕点B逆时针旋转90°得到△BAH,

∵点A(4,0),点B(4,4),点C(0,4),

25

∴OA=OC=BC=AB=4, ∵D为线段OC中点, ∴CD=DO=2,

∵将△BCD绕点B逆时针旋转90°得到△BAH, ∴△BCD≌△BAH,

∴BD=BH,∠CBD=∠HBA,CD=AH=2, ∵∠DBE=45°, ∴∠CBD+∠EBA=45°,

∴∠EBA+∠ABH=45°=∠HBE=∠DBE,且BD=BH,BE=BE, ∴△DBE≌△HBE(SAS) ∴DE=EH,

∵OH=OA+AH=4+2=6, ∴DE=EH=6﹣OE, ∵DE2=OD2+OE2, ∴(6﹣OE)2=4+OE2, ∴OE=,

∴点E坐标为(,0);

(3)如图1,若点E在x轴正半轴,点D在y轴正半轴上,

由(2)可知:DE=EH,AH=CD, ∴DE=AE+AH=AE+CD,

如图2,点E在x轴负半轴,点D在y轴正半轴,将△BCD绕点B逆时针旋转90°得到△BAH,

26

∴△BCD≌△BAH,∠DBH=90°, ∴BD=BH,∠CBD=∠HBA,CD=AH, ∵∠DBE=45°,

∴∠DBE=45°=∠HBE,且BD=BH,BE=BE, ∴△DBE≌△HBE(SAS) ∴DE=EH,

∴AE=AH+EH=CD+DE;

如图3,点E在x轴正半轴,点D在y轴负半轴,将△BCD绕点B逆时针旋转90°得到△BAH,

∴△BCD≌△BAH,∠DBH=90°, ∴BD=BH,∠CBD=∠HBA,CD=AH, ∵∠DBE=45°,

∴∠DBE=45°=∠HBE,且BD=BH,BE=BE, ∴△DBE≌△HBE(SAS) ∴DE=EH,

∴CD=AH=AE+EH=AE+DE. 11.解:【探究】

27

由平移可知:AE=BF,AE∥BF, ∴∠CBF=∠ACB, ∵四边形ABCD是矩形, ∴AD=BC, ∵EG∥BC, ∴∠AEG=∠ACB, ∴∠AEG=∠CBF, ∵GE∥BC,AC∥BG, ∴四边形EGBC是平行四边形, ∴EG=BC,

∴△EGA≌△BCF(SAS).

【拓展】如图3中,连接BD交AC于点O,作BK⊥AC于K,F′H⊥BC于H.

∵四边形ABCD是矩形, ∴∠ABC=90°,AB=4,BC=2, ∴AC=

=2

∵?AB?CB=?AC?BK, ∴BK=

28

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

10.解:(1)∵+(2b﹣a﹣c)2+|b﹣c|=0, ∴a=4,b=c,2b﹣a﹣c=0, ∴b=4,c=4, ∴点A(4,0),点B(4,4),点C(0,4); (2)如图1,将△BCD绕点B逆时针旋转90°得到△BAH, ∵点A(4,0),点B(4,4),点C(0,4), 25 ∴OA=OC=BC=AB=4, ∵D为线段OC中点, ∴CD=DO=2, ∵将△BCD绕点B逆时针旋转90°得到△BAH, ∴△BCD≌△BAH, ∴BD=BH,∠CBD=∠HBA,CD=AH=2, ∵∠DBE=45°, ∴∠CBD+∠EBA=45°, ∴∠EBA+∠

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com