云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2018年苏科版初二数学八年级下册 9.1图形的旋转 单元同步习题 有答案

2018年苏科版初二数学八年级下册 9.1图形的旋转 单元同步习题 有答案

  • 62 次阅读
  • 3 次下载
  • 2025/6/1 0:59:29

(2)轴对称的性质:AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.

(3)轴对称的性质:轴对称图形对称轴是任何一对对应点所连线段的垂直平分线.所以与对应点有关的结论为:l垂直平分AA′. (4)OA=OA′,∠AOA′=∠BOB′.

故答案为:(1)AB=A′B′,AB∥A′B′;(2)AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.;(3)l垂直平分AA′;(4)OA=OA′,∠AOA′=∠BOB′.

【点评】本题考查了旋转的性质,平移的性质,轴对称的性质,余角和补角的性质,熟练掌握各性质是解题的关键.

19.(2016?娄底)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F. (1)求证:△BCF≌△BA1D.

(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.

【分析】(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;

(2)由旋转的性质得到∠A1=∠A,根据平角的定义得到∠DEC=180°﹣α,根据四边形的内角和得到∠ABC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,证得四边形A1BCE是平行四边形,由于A1B=BC,即可得到四边形A1BCE是菱形. 【解答】(1)证明:∵△ABC是等腰三角形, ∴AB=BC,∠A=∠C,

∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置, ∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,

在△BCF与△BA1D中,

∴△BCF≌△BA1D;

(2)解:四边形A1BCE是菱形,

∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置, ∴∠A1=∠A, ∵∠ADE=∠A1DB, ∴∠AED=∠A1BD=α, ∴∠DEC=180°﹣α, ∵∠C=α, ∴∠A1=α,

∴∠ABC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α, ∴∠A1=∠C,∠A1BC=∠AEC, ∴四边形A1BCE是平行四边形, ∴A1B=BC,

∴四边形A1BCE是菱形.

【点评】本题考查了旋转的性质,全等三角形的判定和性质,等腰三角形的性质,正确的理解题意是解题的关键.

20.(2016?荆门)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC

上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.

(1)补充完成图形;

(2)若EF∥CD,求证:∠BDC=90°.

【分析】(1)根据题意补全图形,如图所示;

(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.

【解答】解:(1)补全图形,如图所示; (2)由旋转的性质得:∠DCF=90°, ∴∠DCE+∠ECF=90°, ∵∠ACB=90°, ∴∠DCE+∠BCD=90°, ∴∠ECF=∠BCD, ∵EF∥DC,

∴∠EFC+∠DCF=180°, ∴∠EFC=90°, 在△BDC和△EFC中,

∴△BDC≌△EFC(SAS), ∴∠BDC=∠EFC=90°.

【点评】此题考查了旋转的性质,以及全等三角形的判定与性质,熟练掌握旋转的性质是解本题的关键.

21.如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.

(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是 2 个单位长度;△AOC与△BOD关于直线对称,则对称轴是 y轴 ;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是 120 度; (2)连结AD,交OC于点E,求∠AEO的度数.

【分析】(1)由点A的坐标为(﹣2,0),根据平移的性质得到△AOC沿x轴向右平移2个单位得到△OBD,则△AOC与△BOD关于y轴对称;根据等边三角形的性质得∠AOC=∠BOD=60°,则∠AOD=120°,根据旋转的定义得△AOC绕原点O顺时针旋转120°得到△DOB;

(2)根据旋转的性质得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以OE为等腰△AOD的顶角的平分线,根据等腰三角形的性质得到OE垂直平分AD,则∠AEO=90°.

【解答】解:(1)∵点A的坐标为(﹣2,0), ∴△AOC沿x轴向右平移2个单位得到△OBD; ∴△AOC与△BOD关于y轴对称; ∵△AOC为等边三角形, ∴∠AOC=∠BOD=60°, ∴∠AOD=120°,

∴△AOC绕原点O顺时针旋转120°得到△DOB.

(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB, ∴OA=OD,

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

(2)轴对称的性质:AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上. (3)轴对称的性质:轴对称图形对称轴是任何一对对应点所连线段的垂直平分线.所以与对应点有关的结论为:l垂直平分AA′. (4)OA=OA′,∠AOA′=∠BOB′. 故答案为:(1)AB=A′B′,AB∥A′B′;(2)AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.;(3)l垂直平分AA′;(4)OA=OA′,∠AOA′=∠BOB′. 【点评】本题考查了旋转的性质,平移的性质,轴对称的性质,余角和补角的性质,熟练掌握各性质是解题的关键. 19.(2016?娄底)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F. (1

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com