当前位置:首页 > 2017-2018学年上海市交通大学附属中学高二下学期期末考试数学试题(含答案)
试卷答案
一、填空题
1.??1,2?U?2,??? 2.16? 3.?448 4.6
5.480 6.1 7.
13?x?1 8.
105[来源学科网ZXXK]
9.48 10.3 11. ①②③④ 12.
3?32 二、选择题
13-16:CBDA
三、解答题
[来源:Zxxk.Com]
17.解析:(1)由题意得:
???5x?1x2???0.5?0.25x,0?x?5?y?????2?????1?2x2?194x?12,0?x?5;
??????5?5?12?52????0.5?0.25x,x?5????14x?12,x?5(2)当0?x?5时,函数对称轴为x?194??0,5?, 故当x?194时,y?345max32; 当x?5时,函数单调递减,故y??54?12?433454?32, 所以当年产量为475件时,所得利润最大. 18.解析:讨论法! ①当a?0时,x??1; ②当a?0时:
[来源:学科网ZXXK]
1o a?0,ax2??a?1?x?1?0,因为???a?1?2?4a??a?1?2?0,
故等式左边因式分解得:?ax?1??x?1??0?x????,?1?U??1?a,?????; 2o当?1?a?0时,??ax?1??x?1??0?1a?x??1; 3o当a??1时,x2?2x?1?0,此时解集为空集;
5
4o当a??1时,??ax?1??x?1??0??1?x?1a; 19.解析:(1)证明:∵BF?平面ACE,∴BF?AE,
∵二面角D?AB?E为直二面角,且CB?AB,∴CB?平面ABE, ∴CB?AE,∴AE?平面BCE.
(2)arcsin63;(3)233. 20.解析:(1)依题意得:f?ur???ur?2?ur?ra?ra?rv,设ra??x,y,z?,代入运算得:
??2x2?1?0?2xy?0?ra??22?r?22???2xz?1??2,0,2??或a?????,0,??22??; ??(2)设rx??a,b,c?,ury??m,n,t?,ra??a1,a2,a3?,则
f?rx??f?ury???r??x?2?rx?ra?ra??????ury?2?ury?ra?ra?? ?rx?ury?4?ury?ra??rx?ra??4?ury?ar??rx?ar??ar?2?rx?ury?4?ury?ar??rx?ar??4?ury?ar??rx?ar??rx?ury从而得证;
(3)设rx与ra的夹角为?,则rx?ra?rx?racos??cos?,
则f?rx??rx?2rx?2?rx?ra?ra??2rx?2cos?ra?2?4?4cos2??2,故最大值为2.
21.解析:(1)证明:假设g?x?是可变换函数,则t?g?x?t??kx?t?t2?tx?k?0,因为变量x是任意的,故当??x2?4k?0时,此时有关变量t的一元二次方程无解, 则与假设矛盾,故原结论正确,得证;
(2)若y??x3是可变换函数,则t???x?t?3,
则有关t的两个函数:?????t???t必须有交点,而??t?连续且单调递减,值域为R,??h?t???t?x?3 h?t?连续且单调递增,值域为R,所以这两个函数??t?与h?t?必定有交点,
即:变量t是变量x的函数,所以y??x3是可变换函数;
(3)函数h?x??logbx为可变换函数,则t?h?x?t??t?logb?x?t?,
6
若b?1,则t恒大于logb?x?t?,即无交点,不满足题意;
??y?t若0?b?1,则?必定有交点,即方程t?logb?x?t?有解,从而满足题意.
y?logt?x???b?
7
共分享92篇相关文档