云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2019高中数学 第2章 推理与证明 2.2 直接证明与间接证明 2.2.2 反证法学案 新人教A版选修1-2

2019高中数学 第2章 推理与证明 2.2 直接证明与间接证明 2.2.2 反证法学案 新人教A版选修1-2

  • 62 次阅读
  • 3 次下载
  • 2025/12/3 2:45:35

2.2.2 反证法

学习目标:1.了解反证法是间接证明的一种基本方法.(重点、易混点)2. 理解反证法的思考过程,会用反证法证明数学问题.(重点、难点)

[自 主 预 习·探 新 知]

反证法的定义及证题的关键

思考1:反证法的实质是什么?

[提示]反证法的实质就是否定结论,推出矛盾,从而证明原结论是正确的.

思考2:有人说反证法的证明过程既可以是合情推理也可以是一种演绎推理,这种说法对吗?为什么?

[提示]反证法是间接证明中的一种方法,其证明过程是逻辑非常严密的演绎推理.

[基础自测]

1.思考辨析

(1)反证法属于间接证明问题的方法.

( )

( )

(2) 反证法就是通过证明逆否命题来证明原命题. (3)反证法的实质是否定结论导出矛盾. ( ) [答案] (1)√ (2)× (3)√ 2.“a

【导学号:48662082】

A.a≠b C.a=b [答案] D

33

3.用反证法证明“如果a>b,那么a>b ”,假设的内容应是________. [答案]

3

B.a>b D.a=b或a>b

a≤b

3

4.应用反证法推出矛盾的推导过程中,下列选项中可以作为条件使用的有________.(填序号)

①结论的反设;②已知条件;③定义、公理、定理等;④原结论.

①②③ [反证法的“归谬”是反证法的核心,其含义是:从命题结论的假设(即把“反

1

设”作为一个新的已知条件)及原命题的条件出发,引用一系列论据进行正确推理,推出与已知条件、定义、定理、公理等相矛盾的结果.]

[合 作 探 究·攻 重 难]

用反证法证明否定性命题 已知三个正数a,b,c成等比数列,但不成等差数列.求证:a,b,c不成等差数列.

【导学号:48662083】

[证明] 假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b. ∵a,b,c成等比数列,∴b=ac,即b=ac, ∴a+c+2ac=4ac,∴(a-c)=0,即a=c. 从而a=b=c,与a,b,c不成等差数列矛盾, 故a,b,c不成等差数列. [规律方法] 1.用反证法证明否定性命题的适用类型 结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法. 2.用反证法证明数学命题的步骤 2

2

[跟踪训练] 1.设SA、SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点,求证:AC与平面

SOB不垂直.

[证明] 假设AC⊥平面SOB,如图 ∵直线SO在平面SOB内, ∴SO⊥AC.

∵SO⊥底面圆O,∴SO⊥AB. ∴SO⊥平面SAB. ∴平面SAB∥底面圆O.

这显然出现矛盾,所以假设不成立,即AC与平面SOB不垂直.

2

用反证法证明唯一性命题 求证方程2=3有且只有一个根. 【导学号:48662084】

[证明] ∵2=3,∴x=log23,这说明方程2=3有根.下面用反证法证明方程2=3的根是唯一的:假设方程2=3至少有两个根b1,b2(b1≠b2),

则2b1=3,2b2=3, 两式相除得2b1-b2=1.

若b1-b2>0,则2b1-b2>1,这与2b1-b2=1相矛盾. 若b1-b2<0,则2b1-b2<1,这也与2b1-b2=1相矛盾. ∴b1-b2=0,则b1=b2.

∴假设不成立,从而原命题得证. [规律方法] 巧用反证法证明唯一性命题 当证明结论有以“有且只有”“当且仅当”“唯一存在”“只有一个”等形式出现的命题时,由于反设结论易于推出矛盾,故常用反证法证明. 用反证法证题时,如果欲证明命题的反面情况只有一种,那么只要将这种情况驳倒了就可以;若结论的反面情况有多种,则必须将所有的反面情况一一驳倒,才能推断结论成立. 证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性. [跟踪训练] 2.求证:两条相交直线有且只有一个交点.

[证明] 假设结论不成立,则有两种可能:无交点或不止一个交点. 若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.

若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.

综上所述,两条相交直线有且只有一个交点.

xxxxx 用反证法证明“至多”“至少”问题 [探究问题] 1.你能阐述一下“至少有一个、至多有一个、至少有n个”等量词的含义吗? 提示:

量词 至少有一个 至多有一个 含义 有n个,其中n≥1 有0或1个 3

至少有n个 大于等于n个 2.在反证法证明中,你能说出 “至少有一个、至多有一个、至少有n个”等量词的反设词吗?

提示:

量词 至少有一个 至多有一个 至少有n个 2反设词 一个也没有 至少有两个 至多有n-1个 222 已知a≥-1,求证三个方程:x+4ax-4a+3=0,x+(a-1)x+a=0,x+2ax-2a=0中至少有一个方程有实数解.

[证明] 假设三个方程都没有实根,则三个方程中:它们的判别式都小于0,即:

a2--4a+??22

-4a<0,?a-

??a2+4×2a<0

??3??1

a>或a<-1,?-

231-

这与已知a≥-1矛盾,所以假设不成立,故三个方程中至少有一个方程有实数解. 母题探究:1.(变条件)将本题改为:已知下列三个方程x+4ax-4a+3=0,x+(a-1)x+a=0,x+2ax-2a=0至少有一个方程有实数根,如何求实数a的取值范围? [解] 若方程没有一个有实根, 22216a--4a,??22-4a<0,则?a-??4a2+8a<0,2 ??3解得?1a>或a<-1,即-

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

2.2.2 反证法 学习目标:1.了解反证法是间接证明的一种基本方法.(重点、易混点)2. 理解反证法的思考过程,会用反证法证明数学问题.(重点、难点) [自 主 预 习·探 新 知] 反证法的定义及证题的关键 思考1:反证法的实质是什么? [提示]反证法的实质就是否定结论,推出矛盾,从而证明原结论是正确的. 思考2:有人说反证法的证明过程既可以是合情推理也可以是一种演绎推理,这种说法对吗?为什么? [提示]反证法是间接证明中的一种方法,其证明过程是逻辑非常严密的演绎推理. [基础自测] 1.思考辨析 (1)反证法属于间接证明问题的方法. ( ) ( ) (2) 反证法就是通过证明逆否

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com