当前位置:首页 > 关于麦芽糊精和低聚麦芽糖
关于麦芽糊精和低聚麦芽糖
1、低聚麦芽糖的甜度
如以蔗糖的甜度为 100 ,各种低聚麦芽糖的甜度分别为: G7 = 5 、 G6 = 10 、 G5 = 17 、 G4 = 20 、 G3 = 32 、 G2 = 44 、葡萄糖( G )= 70 。随着聚合度的增加,甜度在减 少, G4 以上只能感觉到甜味,但味质良好。低甜度特性是一种现代人追求的口感,这 是一种良好的性质,和其他各种食品混合也不会对口味产生恶劣影响,而且能够大量 的使用。 2 、低聚麦芽糖的粘度
各种麦芽低聚糖的粘度与糖浓度有相应的关系, G3 以上与 G2 以下的粘度特性存 在着明显的差异, G2 的粘度特性与蔗糖相同, G3 以上者具有较高的粘性。后者可使 用于具有布丁感的食品中。 3 、低聚麦芽糖的 保湿性
4、低聚麦芽糖的 水分活度 水分活度在食品保藏中担负着重要的角色。水分活度在 0.95 以下,革兰氏阴性杆 菌便停止发育,而乳酸杆菌等细菌的繁殖具有优势;水分活度在 0.88 以下,细菌和酵 母停止发育,而霉菌能够生长;水分活度在 0.80 以下,除耐干性的霉菌外,都不能生 长;水分活度在微生物则全不能生长。因此,如在低水分活度下保藏,,室温下也能起 到抑制微生物的作用,可以长时间的保持食品的品质。水分活度( Aw )以 P/P0 表示( P: 水溶液的蒸气压, P0 :纯水的蒸气压),溶质吸入的水分子越多,则 Aw 越小。在糖浓 度为 70 %时,随着聚合度的增加,水分活度是逐渐增大的,葡萄糖、麦芽糖、麦芽三 糖、麦芽四糖在 20 ℃ 时的 Aw 分别为 0.75 、 0.82 、 0.89 、 0.915 。所以,对于低聚麦芽糖 要在相当大的糖浓度时才能发挥静菌效果。 根据我们实验检测结果表明:浓度在 75 %时,室温下保存两年,产品仍然无色透 明,质量没起什么变化,经液相色谱分析,其组成无变化。 三、低聚麦芽糖的生理功能和人体健康
麦芽低聚糖有滋补营养性,它们能延长供能,强化机体耐力和做功能力,易消化 吸收,是一种低甜度、低渗透压的新型甜味剂。当人们经劳动或长时间剧烈运动后, 体力消耗大,往往会出现出汗、脱水、体内能源贮备减少、血糖降低、体温升高、肌 肉神经传导受到影响、脑功能紊乱等一系列生理上的变化。如服用
直链麦芽低聚糖, 就能迅速减轻和克服上述现象。 低聚麦芽糖的生理功能和人体健康
低聚麦芽糖有滋补营养性,它是一种能延长供能、强化机体耐力和作功功能、易消化吸收、低甜度、低渗透压的新糖源。当人们经常劳动或长时间剧烈运动后,体力消耗大,往往会出现出汗、脱水,体内能源贮备减少,血糖降低,体温升高,肌肉神经传导受到影响,脑功能紊乱等一系列生理上的变化,如服用了直链低聚麦芽糖,便能迅速减轻和克服上述现象。而且据日本临床试验结果表明,这种低聚糖能使老年人对钙离子的吸收能力提高,是预防老人骨质疏松的有效营养补剂。另外,低聚麦芽糖还可应用于胰脏切除病人的饮食治疗,肾脏患者的能量来源等。
低聚麦芽糖的指标
项 目 外观 感 官 指 标 色泽 气味 滋味 水分(%)≤ 灰分(%)≤ 理 化 指 标 DE 麦芽低聚糖含量(%) 砷(以 As 计) mg/kg ≤ 卫 生 指 标 铅 ( 以 Pb 计 ) mg/kg ≤ 菌落总数 个/ g ≤ 大肠杆菌 个/ 100g ≤ 项目 18 - 28 60 固形物(%)≥ 固 体 指 标 固体粉末,无肉眼可见杂质 白色 无异味 甜味温和纯正 6 0.3 - 0.5 1 1000 30 致病菌 不得检出 碳水化合物——麦芽糊精与麦芽低聚糖
时间:2006-06-17 11:29:00 来源:食品商务网
摘要:碳水化物是人体最主要的能量来源,本文主要叙述了淀粉质类碳水化合物概念、组成及在人体中的吸收,同时介绍了碳水化合物的两种组成麦芽糊精、麦芽低聚糖的生产、特性以及在人体中的吸收情况。
关键词:碳水化合物、麦芽糊精、麦芽低聚糖、吸收
碳水化物是一类由碳、氢、氧三种元素组成的有机化合物。由于其结构中的氢、氧之比与水(H2O)相同,因而被称为碳水化合物,又称糖类。我们都知道人的一切生命活动都离不开能量,而碳水化合物是三大产能营养素中最主要、最经济的能量来源。更为重要的是,大脑工作时所需的唯一直接来源,是“葡萄糖(碳水化合物中的一种)”这种物质,这是其他营养素无法替代的。根据分子结构的繁简,碳水化合物分为单糖、双糖和多糖三大类。因此,碳水化合物作为营养均要消化或单糖才能为人体所吸收,消化的过程就是水解的过程。 单糖是最简单的碳水化合物,易溶于水,可直接被人体吸收利用。最常见的单糖有葡萄糖、果糖和半乳糖。双糖是由两分子单糖脱去一分子水缩合而成的糖,易溶于水。它需要分解成单糖才能被身体吸收。最常见的双糖是蔗糖、麦芽糖和乳糖。多糖是由许多单糖分子结合而成的高分子化合物,无甜味,不溶于水。多糖主要包括淀粉、糊精、糖原和膳食纤维。淀粉是谷类、薯类、豆类食物的主要成分。淀粉在消化酶的作用下可分解成糊精,再进一步消化成麦芽低聚糖、麦芽糖直至葡萄糖被吸收。糖原也叫动物淀粉,是动物体内贮存葡萄糖的一种形式,主要存在于肝脏和肌肉内。当体内血糖水平下降时,糖原即可重新分解成葡萄糖满足人体对能量的需要。 一、碳水化合物的消化吸收
人能消化的多糖仅淀粉一种,糖原在制成食品时已不存在了。消化从口腔开始,口腔里有唾液淀粉酶能水解交替α1→4糖甘键,但不能水解α1→6糖苷键和相邻的α1→6糖苷键。消化产物是糊精、麦芽低聚糖和麦芽糖。胃里没有消化淀粉的酶。唾液淀粉酶的最适PH是
6.6~6.8,在食糜没有被胃酸中和以前,能持续作用一段时间,使淀粉和低聚糖能再消化一部分。小肠内有胰液的α-淀粉酶,其作用和唾液淀粉酶相同,把直链淀粉消化成麦芽糖和麦芽三糖,支链淀粉消化成麦芽糖、麦芽三糖及由4~9个葡萄糖分子组成的而有α1→6苷键的麦芽低聚糖。
肠粘膜上皮细胞中有吸收细胞,每一细胞约有3000条微绒毛,微绒毛间的空间的有效半径约0.4nm。只有上述消化产物能够通过,与微绒毛膜上的酶反应。膜上的酶有四种:①α1→4糖苷酶,把葡萄糖分子自上述产物一个个地切下来;②异麦芽糖酶,水解麦芽低聚糖的α1→6糖苷键;③蔗糖酶,消化蔗糖;④β-半糖苷酶,消化乳糖。所以消化分两步进行:①肠腔内的消化,产物是双糖和麦芽低聚糖;②微绒毛膜上的消化,产物是单糖。
四种酶嵌在微绒毛双脂质层内,活性位伸在膜外。在其近处,还有全部嵌在膜内的运输单糖的蛋白质,这样,消化的最终产物立刻可以被运输蛋白所结合。运输蛋白在结合葡萄糖以前,先结合肠腔内的Na+排入肠腔,肠腔中Na+都带入细胞内,释放到胞浆中。Na+排入肠腔,肠腔中的Na+浓度比细胞内高,自低浓度排到高浓度要消耗能量,所需能量由ATP供应。糖进入细胞后,约有15%流回肠腔,25%扩散入血,60%与靠近基膜一端的质膜上的另一载体蛋结合而离开细胞。这一结合不需Na+,而且运输葡萄糖的速度比葡萄糖从肠腔进入吸收细胞的速度快,所以葡萄糖不会在吸收细胞中蓄积,从而提高了吸收效率。当食糜到达空肠下部时,95%的碳水化物都被吸收了。 二、麦芽糊精 1、麦芽糊精概述
麦芽糊精,也称水溶性糊精或酶法糊精。它是以各类淀粉作原料,经酶法工艺低程度控制水解转化,提纯,干燥而成。其原料是含淀粉质的玉米,大米等。也可以是精制淀粉,如玉米淀粉,小麦淀粉,木薯淀粉等。
1970年Veberbacher对麦芽糊精做出如下定义:以淀粉为原料,经控制水解DE值在20%以下的产品称为麦芽糊精,以区别淀粉经热解反应生成的糊精产品。美国则把玉米淀粉为原料水解转化后,经喷雾干燥而获得的碳水化合物产品取名为“麦特灵”(MALRIN),其系列产品的DE值从5%到20%,其商品规格简称为MD50,MD100,MD150,MD200等。
共分享92篇相关文档