当前位置:首页 > 2016高考物理教案第6章《机械能》4机械能守恒定律
4 机械能守恒定律
知识目标 一、机械能
1.由物体间的相互作用和物体间的相对位置决定的能叫做势能.如重力势能、弹性势能、分子势能、电势能等.
(1)物体由于受到重力作用而具有重力势能,表达式为 EP=一mgh.式中h是物体到零重力势能面的高度.
(2)重力势能是物体与地球系统共有的.只有在零势能参考面确定之后,物体的重力势能才有确定的值,若物体在零势能参考面上方高 h处其重力势能为 EP=一mgh,若物体在零势能参考面下方低h处其重力势能为 EP=一mgh,“一”不表示方向,表示比零势能参考面的势能小,显然零势能参考面选择的不同,同一物体在同一位置的重力势能的多少也就不同,所以重力势能是相对的.通常在不明确指出的情况下,都是以地面为零势面的.但应特别注意的是,当物体的位置改变时,其重力势能的变化量与零势面如何选取无关.在实际问题中我们更会关心的是重力势能的变化量.
【例1】如图所示,桌面高地面高H,小球自离桌面高h处由静止落下,不计空气阻力,则小球触地的瞬间机械能为(设桌面为零势面)( ) A.mgh; B.mgH;C.mg(H+h); D.mg(H-h)
解析:这一过程机械能守恒,以桌面为零势面,E初=mgh,所以着地时也为mgh,有的学生对此接受不了,可以这样想,E初=mgh ,末为 E末=?mv2-mgH,而?mv2=mg(H+h)由此两式可得:E末=mgh 答案:A
(3)弹性势能,发生弹性形变的物体而具有的势能.高中阶段不要求具体利用公式计算弹性势能,但往往要根据功能关系利用其他形式能量的变化来求得弹性势能的变化或某位置的弹性势能.
2.重力做功与重力势能的关系:重力做功等于重力势能的减少量WG=ΔEP减=EP初一EP末,克服重力做功等于重力势能的增加量W克=ΔEP增=EP末—EP初
特别应注意:重力做功只能使重力势能与动能相互转化,不能引起物体机械能的变化. 3、动能和势能(重力势能与弹性势能)统称为机械能. 二、机械能守恒定律
1、内容:在只有重力(和弹簧的弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变. 2.机械能守恒的条件
(1)对某一物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.
(2)对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生
第 1 页 共 6 页
机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒. 3.表达形式:EK1+Epl=Ek2+EP2
(1)我们解题时往往选择的是与题目所述条件或所求结果相关的某两个状态或某几个状态建立方程式.此表达式中EP是相对的.建立方程时必须选择合适的零势能参考面.且每一状态的EP都应是对同一参考面而言的.
(2)其他表达方式,ΔEP=一ΔEK,系统重力势能的增量等于系统动能的减少量. (3)ΔEa=一ΔEb,将系统分为a、b两部分,a部分机械能的增量等于另一部分b的机械能的减少量,
三、判断机械能是否守恒
首先应特别提醒注意的是,机械能守恒的条件绝不是合外力的功等于零,更不是合外力等于零,例如水平飞来的子弹打入静止在光滑水平面上的木块内的过程中,合外力的功及合外力都是零,但系统在克服内部阻力做功,将部分机械能转化为内能,因而机械能的总量在减少.
(1)用做功来判断:分析物体或物体受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒;
(2)用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系机械能守恒.
(3)对一些绳子突然绷紧,物体间非弹性碰撞等除非题目的特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能不守恒
说明:1.条件中的重力与弹力做功是指系统内重力弹力做功.对于某个物体系统包括外力和内力,只有重力或弹簧的弹力作功,其他力不做功或者其他力的功的代数和等于零,则该系统的机械能守恒,也就是说重力做功或弹力做功不能引起机械能与其他形式的能的转化,只能使系统内的动能和势能相互转化.如图5-50所示,光滑水平面上,A与L1、L2二弹簧相连,B与弹簧L2相连,外力向左推B使L1、L2 被压缩,当撤去外力后,A、L2、B这个
系统机械能不守恒,因为LI对A的弹力是这个系统外的弹力,所以A、L2、B这个系统机械能不守恒.但对LI、A、L2、B这个系统机械能就守恒,因为此时L1对A的弹力做功属系统内部弹力做功.
2.只有系统内部重力弹力做功,其它力都不做功,这里其它力合外力不为零,只要不做功,机械能仍守恒,即对于物体系统只有动能与势能的相互转化,而无机械能与其他形式转化(如系统无滑动摩擦和介质阻力,无电磁感应过程等等),则系统的机械能守恒,如图5-51所示光滑水平面上
A与弹簧相连,当弹簧被压缩后撤去外力弹开的过程,B相对A没有发生相对滑动,A、B
第 2 页 共 6 页
之间有相互作用的力,但对弹簧A、B物体组成的系统机械能守恒. 3.当除了系统内重力弹力以外的力做了功,但做功的代数和为零,但系统的机械能不一定守恒.如图5—52所示,物体m在速度为v0时受到外力F作用,经时间t速度变为vt.(vt>v0)撤去外力,由于摩擦力的作用
经时间t/速度大小又为v0,这一过程中外力做功代数和为零,但是物体m的机械能不守恒。 【例2】对一个系统,下面说法正确的是( ) A.受到合外力为零时,系统机械能守恒
B.系统受到除重力弹力以外的力做功为零时,系统的机械能守恒 C.只有系统内部的重力弹力做功时,系统的机械能守恒
D.除重力弹力以外的力只要对系统作用,则系统的机械能就不守恒 解析:系统受到合外力为零时,系统动量守恒,但机械能就不一定守恒,C对
【例3】如图所示,在光滑的水平面上放一质量为M=96.4kg的木箱,用细绳跨过定滑轮O与一质量为m=10kg的重物相连,已知木箱到定
滑轮的绳长AO=8m,OA绳与水平方向成300角,重物距地面高度h=3m,开始时让它们处于静止状态.不计绳的质量及一切摩擦,g取10 m/s2,将重物无初速度释放,当它落地的瞬间木箱的速度多大?
解析:本题中重物m和水箱M动能均来源于重物的重力势能,只是m和M的速率不等. 根据题意,m,M和地球组成的系统机械能守恒,选取水平面为零势
2能面,有mgh=?mv2m+?MvM
从题中可知,O距M之间的距离为 h/=Oasin300=4 m
h/当m落地瞬间,OA绳与水平方向夹角为α,则cosα==4/5
OA?h 而m的速度vm等于vM沿绳的分速度,如图5—55所示,则有 vm=vMcosα 所以,由式①一③得vM=6m/s 答案:6m/ s 四.机械能守恒定律与动量守恒定律的区别:
动量守恒是矢量守恒,守恒条件是从力的角度,即不受外力或外力的和为零。机械能守恒是标量守恒,守恒条件是从功的角度,即除重力、弹力做功外其他力不做功。确定动量是否守恒应分析外力的和是否为零,确定系统机械能是否守恒应分析外力和内力做功,看是否只有重力、系统内弹力做功。还应注意,外力的和为零和外力不做功是两个不同的概念。所以,系统机械能守恒时动量不一定守恒;动量守恒时机械能也不一定守恒。
【例4】如图所示装置,木块B与水平面的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在子弹射入木块到弹簧压缩至最短的整个过程中
第 3 页 共 6 页
( )
A.动量守恒、机械能守恒 B.动量不守恒,机械能不守恒 C.动量守恒、机械能不守恒 D.动量不守恒、机械能守恒
解析:在力学中,给定一个系统后,这个系统经某一过程兵动量和机械能是否守恒,要看是否满足动量守恒和机械能守恒条件.在这个过程中,只要系统不受外力作用或合外力为零(不管系统内部相互作用力如何)动量必然守恒.但在子弹、木块、弹簧这个系统中,由于弹簧的压缩,墙对弹簧有作用力,所以水平合外力不等于零,系统动量不守恒,若选取子弹,木块为系统,在子弹射入木块过程中,因t很短,弹簧还来不及压缩,或认为内力远大于外力(弹力),系统动量守恒.在这个过程中,外力 F、N、 mg不做功.系统内弹力做功,子弹打入木块的过程中,有摩擦力做功,有机械能向内能转化.因此机械能不守恒(若取子弹打入B后,A、B一起压缩弹簧的过程,系统只有弹力做功,机械能守恒).答案:B 由上述分析可知,判定系统动量,机械能是否守恒的关键是明确守恒条件和确定哪个过程.
【例5】两个完全相同的质量均为m的沿块A和B,放在光滑水平面上,滑块A与轻弹簧相连,弹簧另一端固定在墙上,当滑块B以v0的初速度向滑块A运动时,如图所示,碰A后不再分开,下述正确的是( )
A.弹簧最大弹性势能为?mv02 B.弹簧最大弹性势能为?mv02 C.两滑块相碰以及以后一起运动系统机械能守恒 D.两滑块相碰以及以后一起运动中,系统动量守恒
解析:两滑决的运动应分两阶段,第一阶段两滑决相碰,由于碰后两滑块一起运动,有部分机械能转化为内能.机械能不守恒,但动量守恒.因此有: mv0=(m十m)v 所以v=?v0
第二阶段,两滑块一起在弹簧力作用下来回振动,此时只有弹簧力做功,机械能守恒.但在此过程系统外力冲量不为零,系统动量不守恒,因此有: EP+?(m+m)v2/2=?(m+m)v2
2 所以弹性势能最大为v/2=0时,所以EP =?mv0. 答案:B
五.机械能守恒定律与动能定理的区别
机械能守恒定律反映的是物体初、末状态的机械能间关系,且守恒是有条件的,而动能定理揭示的是物体动能的变化跟引起这种变化的合外力的功间关系,既关心初末状态的动能,也必须认真分析对应这两个状态间经历的过程中做功情况. 规律方法
1、单个物体在变速运动中的机械能守恒问题
【例6】从某高处平抛一个物体,物体落地时速度方向与水平方向夹角为θ,取地面处重力势能为零,则物体落下高度与水平位移之比为 .抛出时动能与重力势能之比
第 4 页 共 6 页
共分享92篇相关文档