当前位置:首页 > 2012年中考数学压轴题分类解析汇编(十专题)专题03 - 面积问题3(学生版)
2012年中考数学压轴题分类解析汇编(十专题)
专题3:面积问题
1. (2012广东佛山11分)(1)按语句作图并回答:作线段AC(AC=4),以A为圆心a为半径作圆,再以C为圆心b为半径作圆(a<4,b<4,圆A与圆C交于B、D两点),连接AB、BC、CD、DA.
若能作出满足要求的四边形ABCD,则a、b应满足什么条件? (2)若a=2,b=3,求四边形ABCD的面积.
2. (2012广东广州14分)如图,抛物线y=?点B的左侧),与y轴交于点C. (1)求点A、B的坐标;
(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;
(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.
38x?234x+3与x轴交于A、B两点(点A在
第 1 页 共 12 页
2012年中考数学压轴题分类解析汇编(十专题)
3. (2012广东梅州11分)如图,矩形OABC中,A(6,0)、C(0,2)、D(0,3),
射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.
(1)①点B的坐标是 ;②∠CAO= 度;③当点Q与点A重合时,点P的坐标为 ;(直接写出答案)
(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN为等腰三角形?若存在,请直接写出点P的横坐标为m;若不存在,请说明理由.
(3)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.
第 2 页 共 12 页
2012年中考数学压轴题分类解析汇编(十专题)
4. (2012广东汕头12分)如图,抛物线y=交于点C,连接BC、AC. (1)求AB和OC的长;
12x?232x?9与x轴交于A、B两点,与y轴
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).
5. (2012广东深圳9分)如图,在平面直角坐标系中,直线l:y=-2x+b (b≥0)的位置随b的不同取值而变化.
(1)已知⊙M的圆心坐标为(4,2),半径为2.
当b= 时,直线l:y=-2x+b (b≥0)经过圆心M: 当b= 时,直线l:y=-2x+b(b≥0)与OM相切:
(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2). 设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式,
第 3 页 共 12 页
2012年中考数学压轴题分类解析汇编(十专题)
6. (2012广东珠海9分)如图,在等腰梯形ABCD中,ABDC,AB=32,DC=2,高CE=22,对角线AC、BD交于H,平行于线段BD的两条直线MN、RQ同时从点A出发沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G;当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的图形面积为S1、被直线RQ扫过的图形面积为S2,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为x秒. (1)填空:∠AHB= ;AC= ; (2)若S2=3S1,求x;
(3)设S2=mS1,求m的变化范围.
7. (2012贵州贵阳12分)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.
(1)三角形有 条面积等分线,平行四边形有 条面积等分线;
(2)如图①所示,在矩形中剪去一个小正方形,请画出这个图形的一条面积等分线; (3)如图②,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A画出四边形ABCD的面积等分线,并写出理由.
第 4 页 共 12 页
共分享92篇相关文档