云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 基于matlab数字图像处理与识别系统含程序

基于matlab数字图像处理与识别系统含程序

  • 62 次阅读
  • 3 次下载
  • 2025/7/3 15:50:57

开始图像采集人脸检测定位是否定位成功否否是图像与处理是否处理成功否否是是人脸识别是否识别成功否否是是识别结果结束

图3.1 基本框架图

3.3 人脸检测定位算法

人脸检测定位算法大致可分为两大类:基于显式特征的方法和基于隐式特征的方法。

所谓显式特征是指对人类肉眼来说直观可见的特征,如肤色、脸部轮廓、脸部结构等。基于显式特征的方法是指由人通过肉眼观察,总结出人脸区别于“非人脸”区域的特征,然后根据被检测区域是否满足这些“人脸特征”,来判定该区域是否包含人脸。根据所选择的“人脸特征”,基于显式特征的方法分以下三类:基于肤色模型的方法、模板匹配的方法、基于先验知识的方法。

在彩色图像中,颜色是人脸表面最为显著的特征之一,利用颜色检测人脸是很自然的想法。Yang等在考察了不同种族、不同个体的肤色后,认为人类的肤色能在颜色空间中聚成单独的一类,而影响肤色值变化的最主要因素是亮度变化。因此他们采用广泛使用的RGB颜色空间,在滤去亮度值的图像中通过比较像素点的r、g值与肤色范围来推断该像素点及其邻域是否属于人脸区域。除了RGB颜色空间,还有诸如HIS,LUV,GLHS等其它颜色空间被使用。寻找到肤色区域后,必须进行验证,排除类肤色区域。Yoo等利用肤色像素的连通性分割

出区域,使用椭圆拟合各个区域,根据椭圆长短轴的比率判断是否为人脸。

模板匹配的方法一般是人为地先定义一个标准人脸模板,计算输入图像与模板的似然度;然后,确定一个似然度阈值,用以判断该输入图像中是否包含人脸。标准人脸模板可以是固定的样板,也可以是带参变量的曲线函数。

基于先验知识的方法则采用符合人脸生理结构特征的人脸镶嵌图(mosaic image)模型,并在分析了足够多的人脸图像样本的基础上,针对人脸的灰度、边缘、纹理等信息,建立一种关于人脸的知识库。在检测中,首先抽取这些灰度、边缘等信息,然后检验它是否符合知识库中关于人脸的先验知识。

以上三种方法的优缺点比较见表3-1。

表3-1 基于显示特征方法的特点

检测方法 肤色模型 优点与适用场合 检测速度快 检;肤色区域的存在提高了预警率 直观性好,具有较好的适应模板匹配 性 适用复杂图像中的人脸检基于知识的方法 测 运算时间长 参数的确定非常困难 依赖先验知识;多尺度空间遍历工作量大,对表情、尺度变换敏感;可变模板的选择和缺点与需要改进的地方 高光和阴影会造成人脸区域被分割而被漏

基于隐式特征的方法将人脸区域看成一类模式,使用大量“人脸”、“非人脸”样本训练、构造分类器,通过判别图像中所有可能区域是否属于“人脸模式”的方法来实现人脸检测。这类方法有:特征脸法、人工神经网络法、支持向量机法;积分图像法。

特征脸法(eigenface)把单个图像看成一维向量,众多的一维向量形成了人脸图像特征空间,再将其变换到一个新的相对简单的特征空间,通过计算矩阵的

特征值和特征向量,利用图像的代数特征信息,寻找“人脸”、“非人脸”两种模式在该特征空间中的分布规律。

人工神经网络(Artificial Neural Network,ANN)的方法是通过训练一个网络结构,把模式的统计特性隐含在神经网络的结构和参数之中。基于人工神经网络的方法对于复杂的、难以显式描述的模式,具有独特的优势。

支撑向量机(Support Vector Machine,SVM)法是在统计学习理论基础上发展出的一种新的模式识别方法,它基于结构风险最小化的原理,较之于基于经验风险最小化的人工神经网络,一些难以逾越的问题,如:模型选择和过学习问题、非线性和维数灾难问题、局部极小点问题等都得到了很大程度上的解决。但是直接使用SVM方法进行人脸识别有两方面的困难:第一,训练时需要求解二次规划问题计算复杂度高,内存需求量巨大;第二,在非人脸样本不受限制时,需要极大规模的训练集合,得到的支持向量会很多,使得分类器的计算量过高。

基于积分图像(Integral Image)特征的人脸检测方法是Viola等新近提出的一种算法,它综合使用了积分图像描述方法、Adaboost学习算法及训练方法、级联弱分类器。

以上四种方法的优缺点比较见表3-2

表3-2 基于隐式特征方法的特征

检测方法 本征脸法 算不涉及迭代耗费时间短 检测效率高,错误报警数目不多,训练神经网络法 成熟的网络监测速度快 支撑向量机机法 基于积分图像分析法 比神经网络方法具有更好的泛化能力,能对为观测到的例子进行有效分类 检测速度快,基本满足实时检测要求,错误报警数目少时,检测率不高 检测效率可以与神经网络法比较 测错误报警数目多 “非人脸”样本复杂多样,造成支持向量数目多,运算复杂度大 效率也增加了检测时间 多样本训练耗费时间多,但网络监优点 标准人脸模板能抽象人脸全部信息,运缺点与需要改进的地方 但模板检测效率低,多模板提高了 运用matlab仿真进行人脸检测定位实例:

人脸检测定位程序:

%%%%% Reading of a RGB image

i=imread('face1.jpg'); I=rgb2gray(i); BW=im2bw(I); figure,imshow(BW)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% minimisation of background portion

[n1 n2]=size(BW); r=floor(n1/10); c=floor(n2/10); x1=1;x2=r; s=r*c; for i=1:10 y1=1;y2=c; for j=1:10

if (y2<=c | y2>=9*c) | (x1==1 | x2==r*10) loc=find(BW(x1:x2, y1:y2)==0); [o p]=size(loc); pr=o*100/s; if pr<=100

BW(x1:x2, y1:y2)=0; r1=x1;r2=x2;s1=y1;s2=y2; pr1=0; end

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

开始图像采集人脸检测定位是否定位成功否否是图像与处理是否处理成功否否是是人脸识别是否识别成功否否是是识别结果结束 图3.1 基本框架图 3.3 人脸检测定位算法 人脸检测定位算法大致可分为两大类:基于显式特征的方法和基于隐式特征的方法。 所谓显式特征是指对人类肉眼来说直观可见的特征,如肤色、脸部轮廓、脸部结构等。基于显式特征的方法是指由人通过肉眼观察,总结出人脸区别于“非人脸”区域的特征,然后根据被检测区域是否满足这些“人脸特征”,来判定该区域是否包含人脸。根据所选择的“人脸特征”,基于显式特征的方法分以下三类:基于肤色模型的方法、模板匹配的方法、基于先验知识的方法。 在彩色图像中,颜色是人脸表面最为显著的特征之一,利用颜色检测人脸是很自然的

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com