当前位置:首页 > 西邮科技光学课程设计报告 - 图文
r2=sqrt(R2R);
f=(4*pi*q*cos(j1))./w; A=r1.^2+r2.^2;
B=1+(r1.^2)*(r2.^2); C=2*r1*r2.*cos(f); R1=(A+C)./(B+C); R=R1/100;
plot(w,R,'r') hold on
j0=pi/6;
j1=asin((n0*sin(j0))/n1); f=(4*pi*q*cos(j1))./w;
r1s=-(n1*cos(j1)-n0*cos(j0))/(n1*cos(j1)+n0*cos(j0)); r1p=(n1/cos(j1)-n0/cos(j0))/(n1/cos(j1)+n0/cos(j0)); R1s=r1s.^2; R1p=r1p.^2;
R1R=(R1s+R1p)/2; r1=sqrt(R1R);
j2=asin((n1.*sin(j1))./n2);
r2s=(n1*cos(j1)-n2*cos(j2))/(n1*cos(j1)+n2*cos(j2)); r2p=(n2/cos(j1)-n1/cos(j2))/(n2/cos(j1)+n1/cos(j2)); R2s=r2s.^2; R2p=r2p.^2;
R2R=(R2s+R2p)/2; r2=sqrt(R2R);
f=(4*pi*q*cos(j1))./w; A=r1.^2+r2.^2;
B=1+(r1.^2)*(r2.^2); C=2*r1*r2.*cos(f); R1=(A+C)./(B+C); R=R1/100;
plot(w,R,'g') hold on
j0=40*pi/180;
j1=asin((n0*sin(j0))/n1); f=(4*pi*q*cos(j1))./w;
r1s=-(n1*cos(j1)-n0*cos(j0))/(n1*cos(j1)+n0*cos(j0)); r1p=(n1/cos(j1)-n0/cos(j0))/(n1/cos(j1)+n0/cos(j0)); R1s=r1s.^2;
R1p=r1p.^2;
R1R=(R1s+R1p)/2; r1=sqrt(R1R);
j2=asin((n1.*sin(j1))./n2);
r2s=(n1*cos(j1)-n2*cos(j2))/(n1*cos(j1)+n2*cos(j2)); r2p=(n2/cos(j1)-n1/cos(j2))/(n2/cos(j1)+n1/cos(j2)); R2s=r2s.^2; R2p=r2p.^2;
R2R=(R2s+R2p)/2; r2=sqrt(R2R);
f=(4*pi*q*cos(j1))./w; A=r1.^2+r2.^2;
B=1+(r1.^2)*(r2.^2); C=2*r1*r2.*cos(f); R1=(A+C)./(B+C); R=R1/100;
plot(w,R,'b') hold on
j0=50*pi/180;
j1=asin((n0*sin(j0))/n1); f=(4*pi*q*cos(j1))./w;
r1s=-(n1*cos(j1)-n0*cos(j0))/(n1*cos(j1)+n0*cos(j0)); r1p=(n1/cos(j1)-n0/cos(j0))/(n1/cos(j1)+n0/cos(j0)); R1s=r1s.^2; R1p=r1p.^2;
R1R=(R1s+R1p)/2; r1=sqrt(R1R);
j2=asin((n1.*sin(j1))./n2);
r2s=(n1*cos(j1)-n2*cos(j2))/(n1*cos(j1)+n2*cos(j2)); r2p=(n2/cos(j1)-n1/cos(j2))/(n2/cos(j1)+n1/cos(j2)); R2s=r2s.^2; R2p=r2p.^2;
R2R=(R2s+R2p)/2; r2=sqrt(R2R);
f=(4*pi*q*cos(j1))./w; A=r1.^2+r2.^2;
B=1+(r1.^2)*(r2.^2); C=2*r1*r2.*cos(f); R1=(A+C)./(B+C); R=R1/100;
plot(w,R,'k') hold on
j0=pi/3;
j1=asin((n0*sin(j0))/n1); f=(4*pi*q*cos(j1))./w;
r1s=-(n1*cos(j1)-n0*cos(j0))/(n1*cos(j1)+n0*cos(j0)); r1p=(n1/cos(j1)-n0/cos(j0))/(n1/cos(j1)+n0/cos(j0)); R1s=r1s.^2; R1p=r1p.^2;
R1R=(R1s+R1p)/2; r1=sqrt(R1R);
j2=asin((n1.*sin(j1))./n2);
四.实验结果及结果分析
仿真图
分析
1. 从图中我们可以看到,当n1=n0或者n1=n2时,R和未镀膜的反射率R0是一样的。而当n1<n2的时候,R<R0,在λ/4时反射率最小。此时的单层膜具有增透的效果,称为增透膜。当n1>n2时,R>R0,在λ/4时反射率最大。此时的单层膜具有增反的效果,称为增反膜。
2,从图中我们可以看出来,当波长一定的时候,入射角越大,那么反射率越大。同时反射率极小值位置向短波方向移动。另外,当入射角一定的时候,波长越长,那么反射率越大。 小结
第一个程序并不是太过困难,我们只是逐一的将各个薄膜折射率分开进行编程,最后汇总就可以了。通过查询Matlab书籍,我们也了解到了如何给图形加标注,改颜色等技巧。而第一个试验中,我们要了解了正入射时候的单层膜反射率公式即可。第二个程序中所遇到的问题便是,当入射光不是正入射的时候,我们便要用公式进行推导,将不是正入射时候的反射率公式推导出来。做完这个步骤以后,固定各个折射率,逐一输入各个不同的入射角,最后进行汇总即可。其中便是要我们了解到自然光的 s分量和p分量,求出其平均值,再代入单层膜的反射率R公式: R=(r12+r22+2*r1*r2*cosφ)/(1+r12*r22 +2*r1*r2*cosφ),即可算出不同入射角情况下的反射率。
共分享92篇相关文档