µ±Ç°Î»ÖãºÊ×Ò³ > Î÷ÓʿƼ¼¹âѧ¿Î³ÌÉè¼Æ±¨¸æ - ͼÎÄ
½á¹û·ÖÎö£º
1¸´É«¹â²¨ÊÇÓÉÐí¶àµ¥É«¹â²¨×é³ÉµÄ£¬Ö»Óи´É«¹â²¨µÄƵÆ×¿í¶È¡ð
??ºÜÕ£¬¸÷¸öƵÂʼ¯ÖÐÔÚijһ¡°ÖÐÐÄ¡±ÆµÂʸ½½üʱ£¬ÉÏÊö¹ØÓÚ¸´
É«¹â²¨ËٶȵÄÌÖÂÛ²ÅÓÐÒâÒå¡£Èç¹û??½Ï´ó£¬µÃ²»µ½Îȶ¨µÄ²¨Èº£¬Ôò¸´É«²¨ÈºËٶȵĸÅÄîûÓÐÒâÒå¡£
2²¨ÈºÔÚ½éÖÊÖд«²¥Ê±£¬ÓÉÓÚ½éÖʵÄɫɢЧӦ£¬Ê¹µÃ²»Í¬µ¥É«¹â¡ð
²¨µÄ´«²¥ËٶȲ»Í¬¡£Òò´Ë£¬Ëæ×Å´«²¥µÄÍÆÒÆ£¬²¨Èº·¢Éú¡°ÃÖÉ¢¡±£¬ÑÏÖØÊ±£¬ÆäÐÎ×´ÍêÈ«Óë³õʼ²¨Èº²»Í¬¡£ÓÉÓÚ²»´æÔÚ²»±äµÄ²¨Èº£¬ÆäȺËٶȵĸÅÄîÒ²¾ÍûÓÐÒâÒå¡£ËùÒÔÖ»ÓÐÔÚɫɢºÜСµÄ½éÖÊÖд«²¥Ê±£¬ÈºËٶȲſÉÒÔÊÓΪһ¸ö²¨ÈºµÄ´«²¥ËÙ¶È¡£
3ÓÉÓڹⲨµÄÄÜÁ¿Õý±ÈÓڵ糡Õñ·ùµÄƽ·½£¬¶øÈºËÙ¶ÈÊDz¨ÈºµÈÕñ¡ð
·ùµãµÄ´«²¥ËÙ¶È£¬ËùÒÔÔÚȺËÙ¶ÈÓÐÒâÒåµÄÇé¿öÏ£¬Ëü¼´ÊǹⲨÄÜÁ¿µÄ´«²¥ËÙ¶È¡£
Î塢˼¿¼Ìâ
1¡¢.ʲôÊÇȺ£¬Ê²Ã´ÊÇȺËÙ¶È£¬Ê²Ã´ÊÇÏàËÙ¶È£¿ ȺÊǸ´É«¹âµÄ¼¯ºÏ£¬µÈÏàÎ»ÃæµÄ´«²¥ËٶȳÆÎªÏàËÙ¶È£¬µÈÕñ·ùÃæµÄ´«²¥ËٶȳÆÎª
ȺËÙ¶È»ò°üÂçËÙ¶È 2.ȺÓëɫɢÓкιØÏµ£¿ ²¨ÈºÔÚ½éÖÊÖд«²¥Ê±£¬ÓÉÓÚ½éÖʵÄɫɢЧӦ£¬Ê¹µÃ²»Í¬µ¥É«¹â²¨µÄ´«²¥ËٶȲ»Í¬¡£Òò´Ë£¬Ëæ×Å´«²¥µÄÍÆÒÆ£¬²¨Èº·¢Éú¡°ÃÖÉ¢¡±£¬ÑÏÖØÊ±£¬ÆäÐÎ×´ÍêÈ«Óë³õʼ²¨Èº²»Í¬¡£ÓÉÓÚ²»´æÔÚ²»±äµÄ²¨Èº£¬ÆäȺËٶȵĸÅÄîÒ²¾ÍûÓÐÒâÒå¡£ËùÒÔ£¬Ö»ÓÐÔÚɫɢºÜСµÄ½éÖÊÖд«²¥Ê±£¬ÈºËٶȲſÉÒÔÊÓΪһ¸ö²¨ÈºµÄ´«²¥ËÙ¶È
С½á£º
Ò»¿ªÊ¼¾õµÃ³ÌÐòºÜÄÑ£¬ÔÚºÍͬѧÌÖÂÛºó×Ô¼ºÐ´³öÁ˳ÌÐò£¬¸Ð¾õÆäʵ²¢·ÇÄÇôÄÑ¡£×îºóÔÚͬѧ½»Á÷°ïÖúÏÂÍê³ÉÁË·ÂÕæ¡£
±¡Ä¤¸ÉÉæ
Ò»¡¢ ʵÑéÄ¿µÄ£º
1£®ÕÆÎÕµ¥²ã¹âѧ±¡Ä¤µÄ·´ÉäÌØÐÔ£» 2£®ÕÆÎÕ¹âѧ±¡Ä¤µÄ×÷Óü°Ôö͸Ôö·´µÄ¸ÅÄî¡£
ÈÎÎñÓëÒªÇó£º
¶Ôµ¥²ãĤ·´ÉäϵÊý¡¢·´ÉäÂʼ°ÏàλÒò×Ó½øÐмÆË㣬ÆäÖв£Á§»ùƬn=1.5£¬±¡Ä¤ÕÛÉäÂÊÒÀ´ÎÈ¡1.0¡¢1.2¡¢1.4¡¢1.5¡¢1.7¡¢2.0¡¢3.0£¬»æ³ö·´ÉäÂÊËæ±¡Ä¤ºñ¶È£¬ÈëÉä½Ç¼°²¨³¤µÄ±ä»¯ÇúÏß¡£×ܽᱡĤ·´ÉäµÄÌØµã¡£
¶þ¡¢ ʵÑéÔÀí£º
ÔÚ²£Á§»ùƬµÄ¹â»¬±íÃæÉ϶ÆÒ»²ãÕÛÉäÂʺͺñ¶È¶¼¾ùÔȵÄ͸Ã÷½éÖʱ¡Ä¤£¬µ±¹âÊøÈëÉäµ½±¡Ä¤ÉÏʱ£¬½«ÔÚĤÄÚ²úÉú¶à´Î·´É䣬²¢ÇÒÔÚ±¡Ä¤µÄÁ½±íÃæÉÏÓÐһϵÁеĻ¥ÏàÆ½ÐеĹâÊøÉä³ö¡£
¼ÙÉ象ĤµÄºñ¶ÈΪh£¬ÕÛÉäÂÊιn1£¬»ùƬÕÛÉäÂÊΪn2£¬¹âÓÉÕÛÉäÂÊιn0µÄ½éÖÊÈëÉäµ½±¡Ä¤ÉÏ£¬²ÉÓÃÀàËÆÓÚÆ½ÐÐÆ½°å¶à¹âÊø¸ÉÉæµÄ´¦Àí·½·¨£¬¿ÉÒԵõ½µ¥²ãĤµÄ·´ÉäϵÊýΪ£ºr=Eor/Eoi= |r |ei¦Õr¡£Ê½ÖÐr1ÊDZ¡Ä¤ÉϱíÃæµÄ·´ÉäϵÊý£¬r2ÊDZ¡Ä¤Ï±íÃæµÄ·´ÉäϵÊý£¬¦ÕÊÇÏàÁÚÁ½¸ö³öÉä¹âÊø¼äµÄÏàλ²î£¬ÇÒÓУº¦Õ=4¦Ð*n1*h*cos¦È1/¦Ë¡£
µ±¹âÊøÕýÈëÉäµ½±¡Ä¤ÉϵÄʱºò£¬±¡Ä¤Á½±íÃæµÄ·´ÉäϵÊý·Ö±ðΪ£º r1=(n0-n1)/(n0+n1); r2=(n1-n2)/(n1+n2)
×îºóÎÒÃÇ¿ÉÒԵõ½ÕýÈëÉäʱµ¥²ãĤµÄ·´ÉäÂʹ«Ê½£º R=[(n0-n2)2*cos2(¦Õ/2)+(n0*n2/n1-n1)2sin2(¦Õ/2)]/ [(n0+n2)2*cos2(¦Õ/2)+(n0*n2/n1+n1)2sin2(¦Õ/2)]¡£ ¶ÔÓÚÒ»¶¨µÄ»ùƬºÍ½éÖÊĤ£¬n0¡¢n2Ϊ³£Êý£¬¿ÉÓÉÉÏʽµÃµ½RËæ¦Õ¼´Ëæn1*hµÄ±ä»¯¹æÂÉ¡£ÊµÑé·ÂÕæÖеÄͼ¸ø³öÁËn0=1£¬n2=1.5£¬¶Ô¸ø¶¨²¨³¤¦Ë0ºÍ²»Í¬ÕÛÉäÂʵĽéÖÊĤ£¬°´ÕÕÉÏʽ¼ÆËã³öµÄµ¥²ãĤ·´ÉäÂÊRËæÄ¤²ã¹âѧºñ
¶Èn1*hµÄ±ä»¯ÇúÏß¡£ÓÉ´ËÇúÏß¿ÉÈçϽáÂÛ£º
¢Ù n1=n0»òn1=n2ʱ£¬RºÍδ¶ÆÄ¤Ê±µÄ·´ÉäÂÊR0Ò»Ñù¡£ ¢Ú n1£¼n2ʱ£¬R£¼R0,¸Ãµ¥²ãĤµÄ·´ÉäÂʽÏ֮δ¶ÆÄ¤Ê±¼õС£¬Í¸¹ýÂÊÔö´ó£¬
¼´¸ÃĤ¾ßÓÐÔö͸µÄ×÷Óã¬×÷ΪÔö͸Ĥ¡£
½øÒ»²½¹Û²ìʵÑéËùµÃµÄͼ¿ÉÒÔ¿´³ö£¬µ±n1£¼n2£¬n1*h=¦Ë0/4ʱ£¬·´ÉäÂÊ×îС£¬ÇÒR=Rm£¬ÓÐ×îºÃµÄÔö͸Ч¹û¡£Õâ¸ö×îС·´ÉäÂÊΪ£º Rm=[(n0-n12/n2)/(n0+n12/n2)]2
ÓɸÃʽ¿É¼û£¬µ±¶ÆÄ¤²ÄÁϵÄÕÛÉäÂÊn1=(n0*n2)?ʱ£¬Rm=0£¬´Ëʱ´ïµ½ÍêÈ«Ôö͸µÄЧ¹û¡£
ÁíÍ⣬Èç¹ûÎÒÃǸ³Óèn0¡¢n1¡¢n2ÒÔÉÔ΢²»Í¬µÄÒâÒ壬ÄÇôÉÏʽҲÊÊÓÃÓÚ¹âÊøÐ±ÈëÉäµÄÇé¿ö¡£¸ù¾Ý·ÆÄù¶û¹«Ê½£¬ÔÚÕÛÉäÂʲ»Í¬µÄÁ½¸ö½éÖʽçÃæÉÏ£¬ÀýÈç¶ÔÓÚ±¡Ä¤ÉϱíÃæ£¬¹âÊøÐ±ÈëÉäʱµÄ·´ÉäϵÊýΪ£º r1s=-[(n1*cos¦È1-n0*cos¦È0)/(n1*cos¦È1+n0*cos¦È0)] r1p=[(n1/cos¦È1-n0/cos¦È0)/(n1/cos¦È1+n0/cos¦È0)]
ÔÚ·´ÉäÂʵļÆË㹫ʽÖУ¬¶Ôs·ÖÁ¿ºÍp·ÖÁ¿·Ö±ðÓÃÏàÓ¦µÄÓÐЧÕÛÉäÂÊ´úÌæ£¬¾Í¿ÉÒÔ·Ö±ðÇó³ös·ÖÁ¿ºÍp·ÖÁ¿¹âбÈëÉäʱµÄ·´ÉäÂÊ£¬È¡Æäƽ¾ùÖµ¼È¿ÉµÃµ½ÈëÉä×ÔÈ»¹âµÄ·´ÉäÂÊ¡£¶øÔÚʵÑéÖеĵڶþ¸öͼÖУ¬ÎÒÃÇ¿ÉÒÔ¿´µ½£¬ËæÈëÉä½ÇÔö´ó£¬·´ÉäÂÊÔö¼Ó£¬Í¬Ê±·´ÉäÂʼ«Ð¡ÖµÎ»ÖÃÏò¶Ì²¨·½ÏòÒÆ¶¯¡£
¢Û n1£¾n2ʱ£¬R£¾R0,¸Ãµ±²ãĤµÄ·´ÉäÂʽÏδ¶ÆÄ¤Ê±Ôö´ó£¬¼´¸ÃĤ¾ßÓÐÔö
·´µÄ×÷Ó㬳ÆÎªÔö·´Ä¤¡£²¢ÇÒ¹Û²ì±ä»¯ÇúÏß¿ÉÒÔ¿´³ö£¬µ±n1£¾n2£¬ÇÒn1*h=¦Ë0/4ʱ£¬·´ÉäÂÊ×î´ó£¬ÇÒR=RM,ÓÐ×îºÃµÄÔö·´Ð§¹û£¬Æä×î´ó·´ÉäÂÊΪ£º
RM=[(n0-n12/n2)/(n0+n12/n2)]2
¾¡¹ÜÓë¼ÆËã×îС·´ÉäÂʵĹ«Ê½Ïàͬ£¬µ¥Òòn1Öµ²»Í¬£¬¶ÔÓ¦µÄ·´ÉäÂÊR£¬Ò»¸öÊÇ×î´ó£¬Ò»¸öÊÇ×îС¡£ ¢Ü ¶ÔÓÚn1*h=¦Ë0/2µÄ°ë²¨³¤Ä¤£¬²»¹ÜĤ²ãÕÛÉäÂʱȻùƬÕÛÉäÂÊ´ó»¹ÊÇС£¬
µ¥²ãĤ¶ÔÓÚ¦Ë0µÄ·´ÉäÂʶ¼ºÍδ¶ÆÄ¤Ê±µÄ»ùƬ·´ÉäÂÊÏàͬ£¬¼´Îª£º R=[(n0-n2)/(n0+n2)]2
Õâ˵Ã÷£¬¶ÔÓÚ²¨³¤Îª¦Ë0µÄ¹â£¬Ä¤²ãºñ¶ÈÔö¼Ó(»ò¼õС) ¦Ë0/2£¬¶Ô·´ÉäÂÊûÓÐÓ°Ïì¡£
Èý¡¢ ʵÑéÁ÷³Ì¼°³ÌÐò
Á÷³Ìͼ
¢Ù
´ò¿ªMatlab£¬²¢Ð½¨Ò»¸ö¹¤×÷¿Õ¼ä
ÏÈÊäÈëÔÚn0=1,n1=1.2,n2=1.5µÄÇé¿öÏ£¬²¨³¤=400nm£¬ÊäÈëÔÀíÖÐËùÉæ¼°µÄ¹«Ê½£º f=4*pi*n1*h*cos(j1)/langmuda 222´ò¿ªMatlab£¬²¢Ð R=[(n0-n2)*cos(¦Õ/2)+(n0*n2/n1-n1)sin2(¦Õ/2)]/ 2½¨Ò»¸ö¹¤×÷¿Õ¼ä [(n0+n2)2*cos2(¦Õ/2)+(n0*n2/n1+n1)sin2(¦Õ/2)]¡£ È»ºóÓÃplot(x,R,'-r')º¯Êý½«ÏßÌõ±íʾ³öÀ´£¬ÓÃhold on½«Í¼Ðα£³Öס¡£ ͬÑùÓÃÏàͬµÄ¹«Ê½£¬½øÐÐÊäÈën0=1,n2=1.5,n1·Ö±ðµÈÓÚ1£¬1.5£¬1.4£¬1.7£¬2£¬3µÄ Çé¿öÏ£¬·´ÉäÂʵÄÏßÌõ¡£²¢ÇÒ¶¼ÓÃplotº¯Êý±íʾ³öÀ´£¬ÓÃhold on½«Í¼Ðα£³Öס¡£ ½«¸÷²¿·Ö³ÌÐò×ÛºÏÒ»Æð£¬ÔÙÓà legend('n1=1.2','n1=1','n1=1.5','n1=1.4','n1=1.7','n1=2','n1=3')º¯Êý½«¸÷¸öÏßÌõ½øÐбê ×¢£¬±äµÃµ½ÁË×îºóµÄͼÐΡ£ ¢Ú
ÏÈÊäÈëÔÚn0=1,n1=1.32,n2=1.5£¬ÈëÉä½ÇΪ0¡ãµÄÇé¿öÏ£¬²¨³¤=550nm£¬È»ºó´úÈëËùÓõĹ«Ê½£º j0=pi/6 j1=asin(n0*sin(j0)/n1);%½Ç1 j2=asin(n1*sin(j1)/n2);%½Ç2 f=4*pi*n1*h*cos(j1)./langmuda;%ƵÂÊ r1s=-(n1*cos(j1)-n0*cos(j0))./(n1*cos(j1)+n0*cos(j0)); r1p=(n1/cos(j1)-n0/cos(j0))./(n1/cos(j1)+n0/cos(j0)); r1=(r1s+r1p)/2; r2s=-(n2*cos(j2)-n1*cos(j1))./(n2*cos(j2)+n1*cos(j1)); r2p=(n2/cos(j2)-n1/cos(j1))./(n2/cos(j2)+n1/cos(j1)); r2=(r2s+r2p)/2; ´ò¿ªMatlab£¬²¢Ð½¨Ò»¸ö¹¤×÷¿Õ¼ä
¹²·ÖÏí92ƪÏà¹ØÎĵµ