当前位置:首页 > 华为软件编程规范和范例
问内存,如i960cx访问这样的数需读内存三次(一个BYTE、一个SHORT、一个BYTE,由CPU的微代码执行,对软件透明),所有对齐方式下CPU的运行效率明显快多了。
1 8 16 24 32 ------- ------- ------- ------- | long1 | long1 | long1 | long1 | ------- ------- ------- ------- | | | | long2 | ------- ------- ------- -------- | long2 | long2 | long2 | | ------- ------- ------- -------- | ....
〔六〕 =====[ 函数、过程 ]=====
16-1 :对所调用函数的错误返回码要仔细、全面地处理
16-2 :明确函数功能,精确(而不是近似)地实现函数设计
16-3 :编写可重入函数时,应注意局部变量的使用(如编写C/C++ 语言的可重入函数时,应使用auto 即缺省态局部变量或寄存器变量)
说明:编写C/C++语言的可重入函数时,不应使用static局部变量,否则必须经过特殊处理,才能使函数具有可重入性。
16-4 :编写可重入函数时,若使用全局变量,则应通过关中断、信号量(即P 、V 操作)等手段对其加以保护
说明:若对所使用的全局变量不加以保护,则此函数就不具有可重入性,即当多个进程调用此函数时,很有可能使有关全局变量变为不可知状态。
示例:假设Exam是int型全局变量,函数Squre_Exam返回Exam平方值。那么如下函数不具有可重入性。
unsigned int example( int para ) {
unsigned int temp; Exam = para; // (**) temp = Square_Exam( ); return temp; }
此函数若被多个进程调用的话,其结果可能是未知的,因为当(**)语句刚执行完后,另外一个使用本函数的进程可能正好被激活,那么当新激活的进程执行到此函数时,将使Exam赋与另一个不同的para值,所以当控制重新回到“temp = Square_Exam( )”后,计算出的temp很可能不是预想中的结果。此函数应如下改进。
unsigned int example( int para ) {
unsigned int temp;
[申请信号量操作] // 若申请不到“信号量”,说明另外的进程正处于
Exam = para; // 给Exam赋值并计算其平方过程中(即正在使用此
temp = Square_Exam( ); // 信号),本进程必须等待其释放信号后,才可继
[释放信号量操作] // 续执行。若申请到信号,则可继续执行,但其
// 它进程必须等待本进程释放信号量后,才能再使
// 用本信号。 return temp; }
16-5 :在同一项目组应明确规定对接口函数参数的合法性检查应由函数的调用者负责还是由接口函数本身负责,缺省是由函数调用者负责 说明:对于模块间接口函数的参数的合法性检查这一问题,往往有两个极端现象,即:要么是调用者和被调用者对参数均不作合法性检查,结果就遗漏了合法性检查这一必要的处理过程,造成问题隐患;要么就是调用者和被调用者均对参数进行合法性检查,这种情况虽不会造成问题,但产生了冗余代码,降低了效率。 ?6-1 :防止将函数的参数作为工作变量
说明:将函数的参数作为工作变量,有可能错误地改变参数内容,所以很危险。对必须改变的参数,最好先用局部变量代之,最后再将该局部变量的内容赋给该参数。
示例:下函数的实现不太好。
void sum_data( unsigned int num, int *data, int *sum ) {
unsigned int count; *sum = 0;
for (count = 0; count < num; count++) {
*sum += data[count]; // sum成了工作变量,不太好。 } }
若改为如下,则更好些。
void sum_data( unsigned int num, int *data, int *sum ) {
unsigned int count ; int sum_temp; sum_temp = 0;
for (count = 0; count < num; count ++) {
sum_temp += data[count]; }
*sum = sum_temp;
}
?6-2 :函数的规模尽量限制在200 行以内 说明:不包括注释和空格行。 ?6-3 :一个函数仅完成一件功能 ?6-4 :为简单功能编写函数
说明:虽然为仅用一两行就可完成的功能去编函数好象没有必要,但用函数可使功能明确化,增加程序可读性,亦可方便维护、测试。 示例:如下语句的功能不很明显。 value = ( a > b ) ? a : b ; 改为如下就很清晰了。 int max (int a, int b) {
return ((a > b) ? a : b); }
value = max (a, b); 或改为如下。
#define MAX (a, b) (((a) > (b)) ? (a) : (b)) value = MAX (a, b);
?6-5 :不要设计多用途面面俱到的函数
说明:多功能集于一身的函数,很可能使函数的理解、测试、维护等变得困难。 ?6-6 :函数的功能应该是可以预测的,也就是只要输入数据相同就应产生同样的输出
说明:带有内部“存储器”的函数的功能可能是不可预测的,因为它的输出可能取决于内部存储器(如某标记)的状态。这样的函数既不易于理解又不利于测试和维护。在C/C++语言中,函数的static局部变量是函数的内部存储器,有可能使函数的功能不可预测,然而,当某函数的返回值为指针类型时,则必须是STATIC的局部变量的地址作为返回值,若为AUTO类,则返回为错针。 示例:如下函数,其返回值(即功能)是不可预测的。 unsigned int integer_sum( unsigned int base ) {
unsigned int index;
static unsigned int sum = 0; // 注意,是static类型的。
// 若改为auto类型,则函数即变为可预测。
for (index = 1; index <= base; index++) {
sum += index; }
return sum; }
?6-7 :尽量不要编写依赖于其他函数内部实现的函数
说明:此条为函数独立性的基本要求。由于目前大部分高级语言都是结构化的,所以通过具体语言的语法要求与编译器功能,基本就可以防止这种情况发生。但在汇编语言中,由于其灵活性,很可能使函数出现这种情况。
示例:如下是在DOS下TASM的汇编程序例子。过程Print_Msg的实现依赖于Input_Msg的具体实现,这种程序是非结构化的,难以维护、修改。 ... // 程序代码
proc Print_Msg // 过程(函数)Print_Msg ... // 程序代码 jmp LABEL
... // 程序代码 endp
proc Input_Msg // 过程(函数)Input_Msg ... // 程序代码 LABEL:
... // 程序代码 endp
?6-8 :避免设计多参数函数,不使用的参数从接口中去掉 说明:目的减少函数间接口的复杂度。
?6-9 :非调度函数应减少或防止控制参数,尽量只使用数据参数
说明:本建议目的是防止函数间的控制耦合。调度函数是指根据输入的消息类型或控制命令,来启动相应的功能实体(即函数或过程),而本身并不完成具体功能。控制参数是指改变函数功能行为的参数,即函数要根据此参数来决定具体怎样工作。非调度函数的控制参数增加了函数间的控制耦合,很可能使函数间的耦合度增大,并使函数的功能不唯一。 示例:如下函数构造不太合理。
int add_sub( int a, int b, unsigned char add_sub_flg ) {
if (add_sub_flg == INTEGER_ADD) {
return (a + b); } else {
return (a b); } }
不如分为如下两个函数清晰。 int add( int a, int b ) {
return (a + b); }
int sub( int a, int b ) {
return (a b); }
?6-10 :检查函数所有参数输入的有效性
?6-11 :检查函数所有非参数输入的有效性,如数据文件、公共变量等
共分享92篇相关文档