云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 通信原理课后答案

通信原理课后答案

  • 62 次阅读
  • 3 次下载
  • 2025/5/3 18:11:36

《通信原理》习题第一章

I(A)??log2p(A)?0.415bitI(B)??log2p(B)?2bit

(2)

H???p(xi)log2p(xi)?3311log2?log2?0.811bit/符号4444

习题1.14设一信息源的输出由128 个不同符号组成。其中16 个出现的概率为1/32,其余112个出现的概率为1/224。信息源每秒发出1000个符号,且每个符号彼此独立。试计算该信息源的平均信息速率。

解:H???p(xi)log2p(xi)?16*(?

111)?112*(?)log2?6.4bit/符号32224224

4*1000=6400bit/s平均信息速率为6. 。

RB

习题1.15对于二电平数字信号,每秒钟传输 300个码元,问此传码率多少?若数字信号0和1出现是独立等概的,那么传信率

解:RB?300BRb

等于

等于多少?

Rb?300bit/s

习题1.16若题1.12中信息源以 1000B 速率传送信息,则传送 1 小时的信息量为多少?传送 1 小时可能达到的最大信息量为多少?

解:

传送 1 小时的信息量 2.23*1000*3600?8.028Mbit 传送 1 小时可能达到的最大信息量 先求出最大的熵:

习题1.17如果二进独立等概信号,码元宽度为0.5ms,求码元宽度为0.5ms,求传码率

解:二进独立等概信号:四进独立等概信号:

5

Hmax??log21?2.32bit/符5号

则传送 1 小时可能达到的最大信息量 2.32*1000*3600?8.352Mbit

RB和

Rb;有四进信号,

RB和独立等概时的传信率

Rb 。

RB?1?2000B,Rb?2000bit/s0.5*10?3

RB?1?2000B,Rb?2*2000?4000bit/s?30.5*10。

《通信原理》习题第一章

小结:

记住各个量的单位: 信息量: bit

I??log2p(x)

信源符号的平均信息量(熵): bit/符号 平均信息速率:bit/s?(bit/符号)/ (s/符号) 传码率:传信率:

RBRbI???p(xi)log2p(x)

(B) bit/s

第二章习题

习题2.1 设随机过程X(t)可以表示成:

X(t)?2cos(2?t??), ???t??

式中,?是一个离散随机变量,它具有如下概率分布:P(?=0)=0.5,P(?=?/2)=0.5 试求E[X(t)]和RX(0,1)。

解:E[X(t)]=P(?=0)2cos(2?t)+P(?=/2)2cos(2?t??2)=cos(2?t)?sin2?t

cos?t

习题2.2 设一个随机过程X(t)可以表示成:

X(t)?2cos(2?t??), ???t?? 判断它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。

解:为功率信号。

RX(?)?limT??1T/2?T/2X(t)X(t??)dt?T1/2?limT???T?T/22cos(2?t??)*2cos?2?(t??)???dtT?2cos(2??)?ej2?t?e?j2?t

?j2?f?j2?tP(f)???d?????e?j2?t)e?j2?f?d???RX(?)e??(e??(f?1)??(f?1)

习题2.3 设有一信号可表示为:

4exp(?t) ,t?0X(t)?{

0, t<0试问它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。

6

《通信原理》习题第一章

解:它是能量信号。X(t)的傅立叶变换为:

?j?t???t?j?t???(1?j?)tX(?)????x(t)edt?4eedt?4dt????0?0e4 1?j?416则能量谱密度 G(f)=X(f)= ?221?j?1?4?f22

习题2.4 X(t)=x1cos2?t?x2sin2?t,它是一个随机过程,其中x1和x2是相互统计独立的高斯随机变量,数学期望均为0,方差均为?2。试求:

(1)E[X(t)],E[X2(t)];(2)X(t) 的概率分布密度;(3)RX(t1,t2)

解:(1)E?X?t???E?x1cos2?t?x2sin2?t??cos2?t?E?x1?sin2?t?E?x2???0

PX(f)因为x1和x2相互独立,所以E?x1x2??E?x1??E?x2?。

2??2。 又因为E?x1??E?x2??0,?2?Ex12?E2?x1?,所以Ex12?Ex2??????故 EX2?t???cos22?t?sin22?t??2??2

(2)因为x1和x2服从高斯分布,X?t?是x1和x2的线性组合,所以X?t?也服从高斯分布,其概率分布函数p?x?????z2??。 exp??2??2?2????1(3)RX?t1,t2??E?X?t1?X?t2???E?(x1cos2?t1?x2sin2?t1)?x1cos2?t2?x2sin2?t2?? ??2?cos2?t1cos2?t2?sin2?t1sin2?t2? ??2cos2??t2?t1?

习题2.5 试判断下列函数中哪些满足功率谱密度的条件:

(1)??f??cos22?f; (2)a???f?a?; (3)exp?a?f可以判断(1)和(3)满足功率谱密度的条件,(2)不满足。

习题2.6 试求X(t)=Acos?t的自相关函数,并根据其自相关函数求出其功率。 解:R(t,t+?)=E[X(t)X(t+?)] =E?Acos?t*Acos(?t??)?

12A2?AE?cos???cos?(2t??)??cos???R(?) 22A2功率P=R(0)=

22?

解:根据功率谱密度P(f)的性质:①P(f)?0,非负性;②P(-f)=P(f) ,偶函数。

习题2.7 设X1?t?和X2?t?是两个统计独立的平稳随机过程,其自相关函数分别为RX1???和RX2???。试求其乘积X(t)=X1(t)X2(t)的自相关函数。

7

《通信原理》习题第一章

解:(t,t+)=E[X(t)X(t+)]=E[X1(t)X2(t)X1(t??)X2(t??)]

=E?X1(t)X1(t??)?E?X2(t)X2(t??)?=RX1(?)RX2(?)

习题2.8 设随机过程X(t)=m(t)cos?t,其中m(t)是广义平稳随机过程,且其自相关函数为

?10?4f2,?10 kHZ?f?10 kHZPX(f)?? 0,其它?(1)试画出自相关函数RX(?)的曲线;(2)试求出X(t)的功率谱密度PX(f)和功率P。

?1??, ?1???0?0???1 解:(1)Rx?????1???0,其它?其波形如图2-1所示。

?Rx???120 1 ?

图2-1信号波形图

(2)因为X(t)广义平稳,所以其功率谱密度PX????RX???。由图2-8可见,RX???的波形可视为一个余弦函数与一个三角波的乘积,因此

8

搜索更多关于: 通信原理课后答案 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

《通信原理》习题第一章 I(A)??log2p(A)?0.415bitI(B)??log2p(B)?2bit (2) H???p(xi)log2p(xi)?3311log2?log2?0.811bit/符号4444 习题1.14设一信息源的输出由128 个不同符号组成。其中16 个出现的概率为1/32,其余112个出现的概率为1/224。信息源每秒发出1000个符号,且每个符号彼此独立。试计算该信息源的平均信息速率。 解:H???p(xi)log2p(xi)?16*(? 111)?112*(?)log2?6.4bit/符号32224224 4*1000=6400bit/s平均信息速率为6. 。 RB 习题1.15对于二电平数字信

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com