当前位置:首页 > 概率与统计习题与答案
2.17
2.18
设X~N(0,1).求(1)Y?2X2?1,(2)Z?1X 2解:f(x)?12?e?x22,x?R
y?1}2y?12Fy(y)?p{Y?y}?p{2X2?1?y}?p{X2?当y??1 ,Fy(y)?0,fy(y)?0y?1y??1,Fy(y)?p{??X?2y?1?1fy(y)?Fy(y)?e42?(y?1)'y?1}?2??y?121?x2 edx2?2y?1??1e4y??1?所以 fy(y)??2?(y?1)
?0y??1?
(2)
1Fy(y)?p{Y?y}?p{X?y}22y当y?0,Fy(y)?p{?2y?X?2y}?当y?0,Fy(y)?0,fy(y)?0,?4?2y2?2?e,y?0fy(y)???0,y?0??2y?1?x24?2y2e,fy(y)?F'y(y)?e2?2?2
2.19
第三章 多维随机变量及其分布
3.1 10件产品中有7件一等品,2件二等品,1件三等品,从中任取1件记
?1,取到i等品Xi??(i?1,2,3),求X1,X2的联合分布律。
?0,其它1102p(X1?0,X2?1)?解:107p(X1?1,X2?0)?10p(X1?1,X2?1)?0p(X1?0,X2?0)?
3.2将一枚硬币抛三次,以X表示在三次中出现的次数,以Y表示三次中出现正反面次数之差的绝对值。写出X与Y的联合分布律以及、各自的边缘分布律。 解: X的取值为0,1,2,3;Y的取值为1,3;所以联合分布为.:
1p(X?0,Y?1)?0,p(X?0,Y?3)?,83p(X?1,Y?1)?,p(X?1,Y?3)?0,8
3p(X?2,Y?1)?,p(X?2,Y?3)?081p(X?3,Y?1)?0,p(X?3,Y?3)?,8133131X的边缘分布为:,,,;Y的边缘分布为:,
8888443.3
?kxy,0?x?y?111设(X,Y)的联合密度为f(x,y)=?,求()常数1k;(2)p{X?Y?};(3)p{X<}
0,其它22?????(1)由?11?????f(x,y)dxdy?1,有k?1,得,k?88k?xdx?ydy?0x(2)1p{X?Y?}?2??x?y?1295
f(x,y)dxdy?8?ydy?xdx?8?ydy?xdx??9611102y1y42212111(3)p{X?}?2??x?12f(x,y)dxdy?8?xdx?ydy?0x7163.4
共分享92篇相关文档