当前位置:首页 > 过程设备设计第三版答案(郑津洋 董其伍 桑芝富主编)最新最全版
Nx?04?RD?pEt43N???Mee??x?sin?x?cos?sin?x?cos?x???pRe?x???x?sin?x?cos?x?x??2?RD?pEtx3222??xM???MQx??4?RD?pEte??xcos?x
○7边缘内力引起的应力表达式
?x?Ntx??12Mtt3xz????24?RD?pEtte??x422e??x?sin?x?cos?x?z???N?t12M?3pR2??24?RD????x????esin?x?cos?xz??sin?x?cos?x?3Et???z?0?x2322????x6Qx?t24?RD?p?t22????e??z???zcos?x34????t?4Et??4?
○8综合应力表达式
??x??pR2tpRt??Ntx??12Mtt3xz?pR2t?24?RD?pEt422e??x?sin?x?cos?x?z???N?t12M?32???pR?24?RD????x??x?sin?x?cos?x?z???e?1?e??sin?x?cos?x??3t?Et???????z?0232?6Qx?t24?RD?p2???z???34??t?4Et?x?t2???x2??cos?x?4?z?e??
6.两根几何尺寸相同,材料不同的钢管对接焊
如图所示。管道的操作压力为p,操作温度为0,环境温度为tc,而材料的弹性模量E相等,线膨胀系数分别α1和α2,管道半径为r,厚度为t,试求得焊接处的不连续应力(不计焊缝余高)。 解:○1内压和温差作用下管子1的挠度和转角 内压引起的周向应变为:
???p2?r?w1?p??2?r2?r1?prpr??????E?t2t?wp1??pr22Et?2???
温差引起的周向应变为:
????t2?r?w1??t??2?r2?rpr2??w1r?t??1?t0?tc???1?tw1??r?1?t?t
wp??t1??2Et?2????r?1?t
转角: ?1p??t?0
○2内压和温差作用下管子2的挠度和转角 内压引起的周向应变为:
???p2?r?w2?2?r2?r?p?1?prpr??????E?t2t?wp2??pr22Et?2???
温差引起的周向应变为:
????t2?r?w2??t??2?r2?rpr2??w2r?t??2?t0?tc???2?tw2??r?2?t?t
wp??t2??2Et?2????r?2?t
转角: ?2p??t?0
○3边缘力和边缘边矩作用下圆柱壳1的挠度和转角
wM01????12?D?12M0w1Q0?Q012?D??123Q0Q0
?M01?D?M0?12?D?○4边缘力和边缘边矩作用下圆柱壳2的挠度和转角
w2M0???12?D?M02M0w2Q0???12?D?123Q0?M021?D??Q022?D?Q0
○5变形协调条件
wp??t1p??t?w??1Q01?w??1M01?wp??t2?wQ0Q02?wM0M02?1??MQ0M0??2Mp??t??21??2pr2
○6求解边缘力和边缘边矩
pr122Et?2????r?1?t?M012?D?120?2?D?123Q0??2Et?2????r?2?t?12?D?2M0?12?D?3Q0?D?0?12?D?2Q0??D?M0?2?D?Q0?03Qo?r?D??t0?tc???1??2?○7边缘内力表达式
Nx?0Et2e2??xN??Mx?t0??x?tc???1??2?cos?x?r?D?ex?t0?tc???1??2?sin?x?tc???1??2??cos?x?sin?x?M???M3Qx?r?D?e??x?t0x
○8边缘内力引起的应力表达式
?x?Ntx??12Mtt3z??z?e12zt??x3r?D?e2??x?t0?tc???1??2?sin?x?????zN?t12M?3?t012z?E?2?tc???1??2??cos?x?3?r?D?sin?x?t?2??0?6r6Qx?t22?????z33??t?4t??t2?32???D?e??x?t0?tc???1??2??cos?x?sin?x??z?4???x
○9综合应力表达式
??x?pr2tprt??Ntx??12Mtt3xz?z?pr2tprt?12zt3r?D?e2??x?t0?tc???1??2?sin?xE?2cos?x?12zt3????????
zN?t12M?3?e??x?t0?tc???1??2????r?D?sin?x??2??022???36Qx?t6rt22?????D?e??x?t0?tc???1??2??cos?x?sin?x???z??z33?t?4?t??4???x7. 一单层厚壁圆筒,承受内压力pi=36MPa时,测得(用千分表)筒体外表面的径向位移w0=0.365mm,圆筒外直径D0=980mm,E=2×10MPa,μ=0.3。试求圆筒内外壁面应力值。 解:周向应变
5
????r?w?d?rd??rd??wrw?r??
物理方程
???1E???????r????zw?r???rE???????r??z??
仅承受内压时的Lamè公式
?r??22?R0?pi?R0??1?2???1?2??22?2?R0?Ri?r?K?1?r???piRi222?R0?pi?R0??1?2???1?2??22?2?R0?Ri?r?K?1?r???piRi2?z?piRi222R0?Ri?piK2?1
在外壁面处的位移量及内径: wr?R0?K?E?KpiR02?1??2????w036?490??2?0.3?2?10?0.36551?R0KpiR0Ew?0?2????1??1.188Ri?4901.188?412.538mm
内壁面处的应力值:
?r??pi??36MPapiKK2??????1?1?1?K??36?21.1881.18822?1?1?211.036MPapi2z?361.1882?1?87.518MPa
共分享92篇相关文档