当前位置:首页 > 2015《数列》高考真题总结及答案
2015《数列》高考真题总结
1.(2015·新课标I卷13)在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和.若Sn=126,则n=________.
2.(2015·浙江卷10)已知{an}是等差数列,公差d不为零.若a2,a3,a7成等比数列,且2a1+a2=1,则a1=__________________,d=__________________.
1
3.(2015·安徽卷13)已知数列{an}中,a1=1,an=an-1+2(n≥2),则数列{an}的前9项和等于________.
4.(2015·新课标I卷7)已知{an}是公差为1的等差数列,Sn为{an}的前n项和,若S8=4S4,则a10=( ) 1719
A.2 B.2C.10 D.12 5.(2015·新课标Ⅱ卷5)设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=( )
A.5 B.7 C.9 D.11
6.(2015·北京卷16)已知等差数列{an}满足a1+a2=10,a4-a3=2.
(1)求{an}的通项公式;
(2)设等比数列{bn}满足b2=a3,b3=a7,问:b6与数列{an}的第几项相等?
7.(2015四川文科16)设数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式.
?1?
(2)设数列?a?的前n项和为Tn,求Tn.
?n?
9
8.(2015·重庆卷16)已知等差数列{an}满足a3=2,前3项和S3=2.
(1)求{an}的通项公式;
(2)设等比数列{bn}满足b1=a1,b4=a15,求{bn}的前n项和Tn.
9.(2015·浙江卷17)已知数列{an}和{bn}满足a1=2,b1=1,an+1=2an(n
111
∈N*),b1+2b2+3b3+…+nbn=bn+1-1(n∈N*).
(1)求an与bn;
(2)记数列{anbn}的前n项和为Tn,求Tn.
10.(2015·福建卷17)等差数列{an}中,a2=4,a4+a7=15.
(1)求数列{an}的通项公式;
(2)设bn=2an-2+n,求b1+b2+b3+…+b10的值.
11.(2015·安徽卷18)已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.
(1)求数列{an}的通项公式;
an+1
(2)设Sn为数列{an}的前n项和,bn=,求数列{bn}的前n项和
SnSn+1
Tn.
12.(2015·天津卷18)已知{an}是各项均为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.
(1)求{an}和{bn}的通项公式;
(2)设cn=anbn,n∈N*,求数列{cn}的前n项和.
13.(2015·广东卷19)设数列{an}的前n项和为Sn,n∈N*.已知a1=1,
35
a2=2,a3=4,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn-1.
(1)求a4的值;
1??
?(2)证明:an+1-2an?为等比数列; ??
(3)求数列{an}的通项公式. 14.(2015·湖北卷19)设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q.已知b1=a1,b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式;
an(2)当d>1时,记cn=b,求数列{cn}的前n项和Tn.
n
15.(2015·湖南卷19)设数列{an}的前n项和为Sn.已知a1=1,a2=2,且an+2=3Sn-Sn+1+3,n∈N*.
(1)证明:an+2=3an; (2)求Sn.
16.(2015·山东卷19)已知数列{an}是首项为正数的等差数列,数列
1n{}的前n项和为. an·an+12n+1
(1)求数列{an}的通项公式; (2)设bn=(an+1)·2an,求数列{bn}的前n项和Tn.
1
17.(2015·新课标Ⅱ卷9)已知等比数列{an}满足a1=4,a3a5=4(a4-1),则a2=( )
11
A.2 B.1C.2D.8
2015《数列》高考真题答案
a1.【答案】6【解析】∵a1?2,an?1?2an,∴数列?n?是首项为2,公比为2的等比数列, 2(1?2n)Sn??126n1?2∴,∴2?64,∴n=6.
2,?12(a?2d)?(a1?d)(a1?6d),故有3a1?2d?0,132.【答案】【解析】由题可得,
又因为
2a1?a2?1,即3a1?d?1,所以
d??1,a1?23.
11an?an?1?,且a2?a1?22 3.【答案】27【解析】∵n?2时,1?a?是以a1为首项,2为公差的等差数列 ∴n∴
S9?9?1?9?81??9?18?2722
118a??8?7?4(4a??4?3)11S?4S4,∴224.【答案】B【解析】∵公差d?1,8,解得1119a?a?9d??9?1a1=2,∴1022,故选B.
5.【答案】A
?a?a?2n?2;b6.【答案】(I)n(II)6与数列n的第63项相等.
试题解析:(Ⅰ)设等差数列又因为
?an?的公差为d.因为a4?a3?2,所以d?2.
,故
a1?a2?10,所以
2a1?d?10a1?4.所以
an?4?2(n?1)?2n?2(n?1,2,?).
(Ⅱ)设等比数列所以
?bn?的公比为q.因为b2?a3?8,b3?a7?16,所以q?2,b1?4.
.由128?2n?2,得n?63.所以
b6?4?26?1?128b6与数列
?an?的第63项相等.
共分享92篇相关文档