当前位置:首页 > 2.3 等差数列前n项和的性质
∴{an}是等差数列,又∵a1=8,a4=2, ∴d=-2,an=a1+(n-1)d=10-2n,n∈N*. (2)设数列{an}的前n项和为Sn, 则S8n+n?n-1?
n=2×(-2)=9n-n2.
∵an=10-2n,令an=0,得n=5. 当n>5时,an<0; 当n=5时,an=0; 当n<5时,an>0.
∴当n>5时,Tn=|a1|+|a2|+…+|an| =a1+a2+…+a5-(a6+a7+…+an) =S5-(Sn-S5)=2S5-Sn
=2×(9×5-25)-9n+n2=n2-9n+40, 当n≤5时,Tn=|a1|+|a2|+…+|an| =a1+a2+…+an=9n-n2.
??9n-n2,n≤5,n∈N*,
∴Tn=???
n2-9n+40,n≥6,n∈N*.
14.已知等差数列{an}的前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n等于( )
A.12 B.14 C.16 D.18 答案 B
解析 因为Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn=
n?a1+an?
=210,得n=14. 2
Sn2n+1a10a11
15.已知Sn,Tn分别是等差数列{an},{bn}的前n项和,且=(n∈N*),则+Tn4n-2b3+b18b6+b15= . 答案
41
78
a10+a1110?a10+a11?S20a10a11
解析 因为b3+b18=b6+b15=b10+b11,所以+====
b3+b18b6+b15b10+b1110?b10+b11?T202×20+141
=.
4×20-278
共分享92篇相关文档