当前位置:首页 > 2.3 等差数列前n项和的性质
第2课时 等差数列前n项和的性质
利用等差数列前n项和的函数特征求最值.学习目标
会利用等差数列性质简化求和运算.2.会
1.
知识点一 等差数列{an}的前n项和Sn的性质
性质1 等差数列中依次k项之和Sk,S2k-Sk,S3k-S2k,…组成公差为k2d的等差数列 若等差数列的项数为2n(n∈N*),则S2n=n(an+an+1),S偶-S奇=nd,S偶an+1=(S奇≠0); S奇an若等差数列的项数为2n-1(n∈N*),则S2n-1=(2n-1)an(an是数列的S偶n-1中间项),S奇-S偶=an,=(S奇≠0) nS奇性质3
思考 若{an}是公差为d的等差数列,那么a1+a2+a3,a4+a5+a6,a7+a8+a9是否也是等差数列?如果是,公差是多少?
答案 (a4+a5+a6)-(a1+a2+a3)=(a4-a1)+(a5-a2)+(a6-a3)=3d+3d+3d=9d, (a7+a8+a9)-(a4+a5+a6)=(a7-a4)+(a8-a5)+(a9-a6)=3d+3d+3d=9d. ∴a1+a2+a3,a4+a5+a6,a7+a8+a9是公差为9d的等差数列. 知识点二 等差数列{an}的前n项和公式的函数特征
n?n-1?ddd
a1-?n.当d≠0时,Sn关于n1.公式Sn=na1+可化成关于n的表达式:Sn=n2+?2??22的表达式是一个常数项为零的二次式,即点(n,Sn)在其相应的二次函数的图象上,这就是说dd
a1-?x上横坐等差数列的前n项和公式是关于n的二次函数,它的图象是抛物线y=x2+?2??2标为正整数的一系列孤立的点. 2.等差数列前n项和的最值
?Sn?{an}为等差数列??n?为等差数列 ??性质2 (1)在等差数列{an}中,
?an≥0,?
当a1>0,d<0时,Sn有最大值,使Sn取得最值的n可由不等式组?确定;
?a≤0?n+1??an≤0,
当a1<0,d>0时,Sn有最小值,使Sn取到最值的n可由不等式组?确定.
?an+1≥0?
dd
a1-?n,若d≠0,则从二次函数的角度看:当d>0时,Sn有最小值;当d<0(2)Sn=n2+?2??2时,Sn有最大值.当n取最接近对称轴的自然数时,Sn取到最值.
1.等差数列的前n项和一定是常数项为0的关于n的二次函数.( × )
?Sn?d
2.若等差数列{an}的公差为d,前n项和为Sn.则?n?的公差为.( √ )
2??
3.数列{an}的前n项和Sn=n2+1,则{an}不是等差数列.( √ )
题型一 等差数列前n项和性质的应用
例1 (1)等差数列{an}的前m项和为30,前2m项和为100,求数列{an}的前3m项的和S3m; Sn7n+2a5(2)两个等差数列{an},{bn}的前n项和分别为Sn和Tn,已知=,求的值.
Tnn+3b5解 (1)方法一 在等差数列中, ∵Sm,S2m-Sm,S3m-S2m成等差数列, ∴30,70,S3m-100成等差数列. ∴2×70=30+(S3m-100),∴S3m=210.
SmS2mS3m
方法二 在等差数列中,,,成等差数列,
m2m3m∴
2S2mSmS3m
=+. 2mm3m
即S3m=3(S2m-Sm)=3×(100-30)=210. 9?a1+a9?1
?a1+a9?
2a52S97×9+265
(2)=====. b51T9129?b+b?9+319?b1+b9?
2
2
反思感悟 等差数列前n项和Sn的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.
跟踪训练1 一个等差数列的前10项和为100,前100项和为10,求前110项之和. 解 方法一 设Sn=an2+bn. ∵S10=100,S100=10,
2??10a+10b=100,∴?
2a+100b=10,100??
?解得?111
b=?10.
11a=-,
100
11111
∴Sn=-n2+n.
10010
11111
∴S110=-×1102+×110=-110.
10010方法二 S100-S10=a11+a12+…+a100
共分享92篇相关文档