µ±Ç°Î»ÖãºÊ×Ò³ > 2007ÄêÈ«¹ú¾í1¸ß¿¼Àí¿ÆÊýѧÊÔÌâ¼°´ð°¸(ºÓ±± ºÓÄÏ É½Î÷ ¹ãÎ÷)
½â·¨¶þ£º
£¨¢ñ£©×÷SO¡ÍBC£¬´¹×ãΪO£¬Á¬½áSO£¬ÓɲàÃæSBC¡Íµ×ÃæABCD£¬µÃSO¡ÍÆ½ÃæABCD¡£ ÒòΪSA=SB£¬ËùÒÔAO=BO¡£
ÓÖ¡ÏABC?45£¬¡÷AOBΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬AO¡ÍOB¡£
Èçͼ£¬ÒÔOÎª×ø±êԵ㣬OAΪxÖáÕýÏò£¬½¨Á¢Ö±½Ç×ø±êϵO¡ªxyz£¬
z A(2£¬0£¬0)£¬B(0£¬2£¬0)£¬C(0£¬?2£¬0)£¬S£¨0£¬0£¬1£©0£¬)1£¬?£¬S£¬SA?(2 CB?(0£¬22£¬0)£¬SACB?0£¬ËùÒÔSA¡ÍBC¡£
G C D A ?22?0?£¨¢ò£©È¡ABÖеãE£¬E??2£¬2£¬?£¬
??Á¬½áSE£¬È¡SEÖеãG£¬Á¬½áOG£¬G?O E B y
x ?221?¡£ ??4£¬4£¬?2???221??22?AB?(?2£¬2£¬0)¡£ OG??£¬£¬SE?1?£¬??442???2£¬2£¬?£¬
????SEOG?0£¬ABOG?0£¬OGÓëÆ½ÃæSABÄÚÁ½ÌõÏֱཻÏßSE£¬AB´¹Ö±¡£
ËùÒÔOG¡ÍÆ½ÃæSAB£¬OGÓëDSµÄ¼Ð½Ç¼ÇΪ?£¬SDÓëÆ½ÃæSABËù³ÉµÄ½Ç¼ÇΪ?£¬Ôò
?Óë?»¥Óà¡£
D(2£¬22£¬0)£¬DS?(?2£¬22£¬1)¡£
cos??OGDSOGDS?2222£¬sin??£¬
1111ËùÒÔ£¬Ö±ÏßSDÓëÆ½ÃæSABËù³ÉµÄ½ÇΪarcsin 20£®½â£º
x?x£¨¢ñ£©f£¨x£©µÄµ¼Êýf?(x)?e?e¡£
22¡£ 11µÚ9Ò³
ÓÉÓÚex?e-x¡Ý2exe?x?2£¬¹Êf?(x)¡Ý2¡£ £¨µ±ÇÒ½öµ±x?0ʱ£¬µÈºÅ³ÉÁ¢£©¡£ £¨¢ò£©Áîg£¨x£©= f£¨x£©-ax£¬Ôò
y A D x
g?(x)?f?(x)?a?ex?e?x?a£¬
£¨¢¡£©Èôa¡Ü2£¬µ±x>0ʱ£¬g?(x)?e?e¹Êg£¨x£©ÔÚ(0£¬¡Þ?)ÉÏΪÔöº¯Êý£¬
ËùÒÔ£¬x¡Ý0ʱ£¬g(x)¡Ýg(0)£¬¼´f(x)¡Ýax¡£
x?xB ?a?2?a¡Ý0£¬ P F1 F2 O C a?a2?4£¨¢¢£©Èôa>2£¬·½³Ìg¡¯£¨x£©=0µÄÕý¸ùΪx1?ln£¬
2´Ëʱ£¬Èôx?(0£¬x1)£¬Ôòg¡¯£¨x£©<0£¬¹Êg£¨x£©ÔÚ¸ÃÇø¼äΪ¼õº¯Êý¡£
ËùÒÔ£¬x?(0£¬x1)ʱ£¬g£¨x£©< g£¨0£©=0£¬¼´f£¨x£© 21£®Ö¤Ã÷£º £¨¢ñ£©ÍÖÔ²µÄ°ë½¹¾àc?3?2?1£¬ 22ÓÉAC¡ÍBDÖªµãPÔÚÒÔÏß¶ÎF1F2Ϊֱ¾¶µÄÔ²ÉÏ£¬¹Êx0?y0?1£¬ 2222y0x0y0x21?¡Ü???1¡£ ËùÒÔ£¬32222£¨¢ò£©£¨¢¡£©µ±BCµÄбÂÊk´æÔÚÇÒk?0ʱ£¬BDµÄ·½³ÌΪy=k£¨x+1£©£¬´úÈëÍÖÔ²·½³Ì x2y2??1£¬²¢»¯¼òµÃ(3k2?2)x2?6k2x?3k2?6?0¡£ 32ÉèB£¨x1£¬y1£©£¬D£¨x2£¬y2£©B(x1£¬y1)£¬D(x2£¬y2)£¬Ôò 6k23k2?6x1?x2??2£¬x1x2?2 3k?23k?2µÚ10Ò³ BD?1?k243(k2?1)x1?x2?(1?k)??(x2?x2)?4x1x2???3k2?2£» 22ÒòΪACÓëBCÏཻÓÚµãP£¬ÇÒACµÄбÂÊΪ?1£¬ k?1?43?2?1?43(k2?1)k??ËùÒÔ£¬AC?¡£ ?212k?33?2?2kËıßÐÎABCDµÄÃæ»ý 124(k2?1)2??(k2?1)296S?BDAC?¡Ý?¡£ 2(3k2?2)(2k2?3)?(3k2?2)?(2k2?3)?225??2??µ±k2=1ʱ£¬ÉÏʽȡµÈºÅ¡£ £¨¢¢£©µ±BDµÄбÂÊk=0»òбÂʲ»´æÔÚʱ£¬ËıßÐÎABCDµÄÃæ»ýS=4¡£ ×ÛÉÏ£¬ËıßÐÎABCDµÄÃæ»ýµÄ×îСֵΪ 22£®½â£º £¨¢ñ£©ÓÉÌâÉ裺 96¡£ 25an?1?(2?1)(an?2) ?(2?1)(an?2)?(2?1)(2?2) ?(2?1)(an?2)?2£¬ an?1?2?(2?1)(an?2)¡£ ËùÒÔ£¬ÊýÁÐan?2ÊÇÊ×ÏîΪ2?2£¬¹«±ÈΪ2?1µÄµÈ±ÈÊýÁУ¬ ??an?2?2(2?1)n£¬ ¼´anµÄͨÏʽΪan?n2?(2?1)?1???£¬n=1£¬2£¬3¡¡¡£ µÚ11Ò³ £¨¢ò£©ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷¡£ £¨¢¡£©µ±n=1ʱ£¬Òò2?2£¬b1=a1=2£¬ËùÒÔ 2?b1¡Üa1£¬½áÂÛ³ÉÁ¢¡£ £¨¢¢£©¼ÙÉèµ±n=kʱ£¬½áÂÛ³ÉÁ¢£¬¼´2?bk¡Üa4k?3£¬ Ò²¼´0?bk?2¡Üa4k?3?3¡£ µ±n=k+1ʱ£¬ bk?1?2?3bk?4?2 2bk?3?(3?22)bk?(4?32) 2bk?3(3?22)(bk?2)?0£¬ 2bk?311??3?22£¬ 2bk?322?3?ÓÖ ËùÒÔ bk?1?2?(3?2b2k?)(2bk?3 2)?(3?22)2(bk?2) ¡Ü(2?1)4(a4k?3?2) ?a4k?1?2¡£ Ò²¾ÍÊÇ˵£¬µ±n=k+1ʱ£¬½áÂÛ³ÉÁ¢¡£ ¸ù¾Ý£¨¢¡£©ºÍ£¨¢¢£©Öª2?bn¡Üa4n?3£¬n?1£¬2£¬3£¬¡¡£ µÚ12Ò³
¹²·ÖÏí92ƪÏà¹ØÎĵµ