µ±Ç°Î»ÖãºÊ×Ò³ > ¸ßµÈÊýѧÆÚÄ©¸´Ï°- ¶àÔªº¯Êý΢·Öѧ
¾«Æ·Îĵµ
½â£ºµãP(1,0)´¦´ÓµãP(1,0)µ½Q(2,-1)µÄ·½ÏòÏòÁ¿Îª{1,?1}£¬µ¥Î»»¯µÃ{1?1,}£¬ÓÖ22?z?z?z12?z?2ye2x,?e2x£¬¹Ê?2ye2xcos??e2xcos?£¬|x?1??e£¬ËùÒÔÑ¡A¡££¨ÄÚ?x?y?ly?0?l2ÈÝÒªÇó17£©
63¡¢º¯Êýf(x,y,z)?x?y?zÔÚµã(1,-1,2)´¦ÌݶÈΪ( )
A.£¨2£¬-2£¬4£© B. (-2£¬-2£¬4) C.(-2£¬2£¬-4) D.(2£¬2£¬4)
½â£ºfx?(x,y,z)?2x,fy?(x,y,z)?2y,fz?(x,y,z)?2z, ËùÒÔgradf?{2,?2,4}£¬ËùÒÔÑ¡A¡££¨ÄÚÈÝÒªÇó18£©
64¡¢º¯Êýu?ln(x?y?z)ÔÚµãM(1,2,?2)µÄÌݶÈgradu?( ). (A) ?,22222212?122??244?,?? (B) (C) (D)?,,??
33?999??999??u2x?u2y?u2z?244?gradu??2,?,?£¬?,,??£¬Ëù
?xx?y2?z2?yx2?y2?z2?zx2?y2?z2?999?½â£º
ÒÔÑ¡D£¨ÄÚÈÝÒªÇó18£©
.
¹²·ÖÏí92ƪÏà¹ØÎĵµ