云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 三角形的各个心总结与归纳

三角形的各个心总结与归纳

  • 62 次阅读
  • 3 次下载
  • 2025/6/30 6:14:31

三角形的心

三角形只有五种心

重心:三中线的交点,三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍; 垂心:三高的交点;

内心:三内角平分线的交点,是三角形的内切圆的圆心的简称; 外心:三中垂线的交点;

旁心:一条内角平分线与其它二外角平分线的交点.(共有三个.)是三角形的旁切圆的圆心的简称.

当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心.

1三角形重心

重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。

已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。

证明:根据燕尾定理,S△AOB=S△AOC,又S△AOB=S△BOC,∴S△AOC=S△BOC,再应用燕尾定理即得AF=BF,命题得证。 重心的几条性质:

1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/3 5、三角形内到三边距离之积最大的点。 重 心

三条中线定相交,交点位置真奇巧, 交点命名为“重心”,重心性质要明了, 重心分割中线段,数段之比听分晓; 长短之比二比一,灵活运用掌握好.

2三角形垂心的性质

设⊿ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.

1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外.

2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;

3、 垂心H关于三边的对称点,均在△ABC的外接圆上。

4、 △ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH·HD=BH·HE=CH·HF。

5、 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。

6、 △ABC,△ABH,△BCH,△ACH的外接圆是等圆。

7、 在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则 AB/AP·tanB+ AC/AQ·tanC=tanA+tanB+tanC。

8、 三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。

9、 设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。

10、 锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。

11、 锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。 12、

西姆松(Simson)定理(西姆松线)

从一点向三角形的三边所引垂线的垂足共线的重要条件是该点落在三角形的外接圆上。

3三角形内心

定义

在三角形中,三个角的角平分线的交点是这个三角形内切圆的圆心而三角形内切圆的圆心就叫做三角形的内心,

三角形内心的性质

设⊿ABC的内切圆为☉I(r),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.

1、三角形的三条角平分线交于一点,该点即为三角形的内心. 2、三角形的内心到三边的距离相等,都等于内切圆半径r. 3、r=S/p.

4、在Rt△ABC中,∠C=90°,r=(a+b-c)/2. 5、∠BIC=90°+A/2.

6、点O是平面ABC上任意一点,点I是⊿ABC内心的充要条件是: a(向量OA)+b(向量OB)+c(向量OC)=向量0.

7、点O是平面ABC上任意一点,点I是⊿ABC内心的充要条件是: 向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c).

8、⊿ABC中,A(x1,y1),B(x2,y2),C(x3,y3),那么⊿ABC内心I的坐标是:

(ax1/(a+b+c)+bx2/(a+b+c)+cx3/(a+b+c),ay1/(a+b+c)+by2/(a+b+c)+cy3/(a+b+c)).

9、(欧拉定理)⊿ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^2-2Rr. 10、(内角平分线分三边长度关系)

⊿ABC中,0为内心,∠A 、∠B、 ∠C的内角平分线分别交BC、AC、AB于Q、P、R,

则BQ/QA=a/b, CP/PA=a/c, BR/RC=c/b.

三角形外心

定义

三角形外接圆的圆心叫做三角形的外心.

三角形外心的性质

设⊿ABC的外接圆为☉G(R),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.

1、三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心. 2、锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心在斜边上,与斜边中点重合. 3、GA=GB=GC=R.

3、∠BGC=2∠A,或∠BGC=2(180°-∠A). 4、R=abc/4S⊿ABC.

5、点G是平面ABC上一点,那么点G是⊿ABC外心的充要条件是: (向量GA+向量GB)·向量AB= (向量GB+向量GC)·向量BC=(向量GC+向量GA)·向量CA=向量0.

6、点G是平面ABC上一点,点P是平面ABC上任意一点,那么点G是⊿ABC外心的充要条件是:

向量PG=((tanB+tanC)向量PA+(tanC+tanA)向量PB+(tanA+tanB)向量PC)/2(tanA+tanB+tanC).

7、点G是平面ABC上一点,点P是平面ABC上任意一点,那么点G是⊿ABC外心的充要条件是:

向量PG=(cosA/2sinBsinC)向量PA+(cosB/2sinCsinA)向量PB+(cosC/2sinAsinB)向量PC.

8、设d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

搜索更多关于: 三角形的各个心总结与归纳 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

三角形的心 三角形只有五种心 重心:三中线的交点,三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍; 垂心:三高的交点; 内心:三内角平分线的交点,是三角形的内切圆的圆心的简称; 外心:三中垂线的交点; 旁心:一条内角平分线与其它二外角平分线的交点.(共有三个.)是三角形的旁切圆的圆心的简称. 当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心. 1三角形重心 重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。 已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交A

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com