当前位置:首页 > 高中数学数列放缩专题用放缩法处理数列和不等问题含答案
用放缩法处理数列和不等问题(教师版)
一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列?an?的前n项的和Sn,满足2(1)数列?an?的通项公式; (2)设bn?Sn?an?1,试求:
11,数列?bn?的前n项的和为Bn,求证:Bn?
anan?122222解:(1)由已知得4Sn?(an?1),n?2时,4Sn?1?(an?1?1),作差得:4an?an?2an?an?1?2an?1,所以(an?an?1)(an?an?1?2)?0,又因为?an?为正数数列,所以an?an?1?2,即?an?是公差为2的等差数列,由
2S1?a1?1,得a1?1,所以an?2n?1 11111??(?),所以 (2)bn?anan?1(2n?1)(2n?1)22n?12n?141n?12真题演练1:(06全国1卷理科22题)设数列?an?的前n项的和,Sn?an??2?,n?1,2,3,3332n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tn?,n?1,2,3,Snn+1
,证明:
?Ti?i?1n3. 2解:(Ⅰ)由Sn=an-×2+,n=1,2,3,…,①得a1=S1=a1-×4+所以a1=2 再由①有Sn-1=an-1-×2+,n=2,3,4,…
将①和②相减得:an=Sn-Sn-1=(an-an-1)-×(2-2),n=2,3,…
整理得:an+2=4(an-1+2),n=2,3,…,因而数列{an+2}是首项为a1+2=4,公比为4的等比数列,即:an+2=4×41nnn
=4,n=1,2,3,…,因而an=4-2,n=1,2,3,…,
(Ⅱ)将an=4-2代入①得Sn=×(4-2)-×2+=×(2-1)(2-2) =×(2-1)(2-1) Tn==×=×(-) 所以,
n+1
nn
n
n
n
n+1
n+1
n+1
n
n-1
n
n
n-
n+1
n
n
?Ti=?(-)=×(-
i?1i?1nn12n?1?1)<
二.先放缩再求和
1.放缩后成等比数列,再求和
例2.等比数列
2?an?中,a1,前n项的和为Sn,且S7,S9,S8成等差数列. ??12an1设bn?,数列?bn?前n项的和为Tn,证明:Tn?.
31?an解:∵A9?A7?a8?a9,A8?A9??a9,a8?a9??a9,∴公比q?a91??. a82∴an1?(?)n.bn?214n11?(?)n2?11. ?nnn4?(?2)3?2n(利用等比数列前n项和的模拟公式Sn?Aq?A猜想)
11(1?2)111122?1(1?1)?1. ∴Bn?b1?b2??bn???????13?23?22333?2n32n1?2真题演练2:(06福建卷理科22题)已知数列
?an?满足a1?1,an?1?2an?1(n?N*).
?an?的通项公式;
b?1b?1(II)若数列?bn?满足44(I)求数列
124bn?1?(an?1)bn(n?N*),证明:数列?bn?是等差数列; an1aan*(Ⅲ)证明:??1?2?...?n?(n?N).
23a2a3an?12
(I)解:
an?1?2an?1(n?N*),
?an?1?1?2(an?1),??an?1?是以a1?1?2为首项,2为公比的等比数列 ?an?1?2n.即 an?22?1(n?N*).
(II)证法一:
4k1?14k2?1...4kn?1?(an?1)kn.
?2[(b1?b2?...?bn)?n]?nbn, ①
2[(b1?b2?...?bn?bn?1)?(n?1)]?(n?1)bn?1. ② ②-①,得2(bn?1?1)?(n?1)bn?1?nbn,
即(n?1)bn?1?nbn?2?0,nbn?2?(n?1)bn?1?2?0. ③-④,得 nbn?2?2nbn?1?nbn?0,
即 bn?2?2bn?1?bn?0,?bn?2?bn?1?bn?1?bn(n?N),?(III)证明:
*?bn?是等差数列 ak2k?12k?11?k?1??,k?1,2,...,n, ak?12?12(2k?1)222.放缩后为“差比”数列,再求和 例3.已知数列{an}满足:a1?1,an?1证明:因为an?1即an?1?(1?nn?1.求证: )a(n?1,2,3?)a?a?3?nn?1nnn?122?(1?n)an,所以an?1与an同号,又因为a1?1?0,所以an?0, 2nnan?0,即an?1?an.所以数列{an}为递增数列,所以an?a1?1, n212n?1nn即an?1?an?nan?n,累加得:an?a1??2???n?1.
2222212n?1112n?1令Sn??2???n?1,所以Sn?2?3???n,两式相减得:
222222211111n?1n?1n?1Sn??2?3???n?1?n,所以Sn?2?n?1,所以an?3?n?1, 22222222n?1故得an?1?an?3?n?1.
2?an?3.放缩后成等差数列,再求和
例4.已知各项均为正数的数列{an}的前n项和为Sn,且an?an?2Sn.
2an2?an?12(1)求证:Sn?;
4SS?1(2)求证:n?S1?S2?????Sn?n?1
2222解:(1)在条件中,令n?1,得a1?a1?2S1?2a1,?a1?0?a1?1,又由条件an?an?2Sn有
2an?1?an?1?2Sn?1,上述两式相减,注意到an?1?Sn?1?Sn得
(an?1?an)(an?1?an?1)?0?an?0?an?1?an?0∴an?1?an?1
n(n?1)所以,an?1?1?(n?1)?n,Sn?
2n(n?1)1n2?(n?1)2an?an?1???所以Sn? 2224nn(n?1)n?1(2)因为n?n(n?1)?n?1,所以,所以 ??222n2?3nSn?1?112nn(n?1)Sn????????;S1?S2??Sn?
222222222练习:
1.(08南京一模22题)设函数f(x)?22123x?bx?,已知不论?,?为何实数,恒有f(cos?)?0且44f(2?sin?)?0.对于正数列?an?,其前n项和Sn?f(an),(n?N*).
(Ⅰ)求实数b的值;(II)求数列(Ⅲ)若cn??an?的通项公式;
11,n?N?,且数列?cn?的前n项和为Tn,试比较Tn和的大小并证明之. 1?an61(利用函数值域夹逼性);(II)an?2n?1; 211?11?1?11?1T?c?c?c?…???+c????(Ⅲ)∵cn?,∴n123n?????
2?32n?3?6(2n?2)22?2n?12n?3?n2.(04全国)已知数列{an}的前n项和Sn满足:Sn?2an?(?1),n?1 (1)写出数列{an}的前三项a1,a2,a3;(2)求数列{an}的通项公式;
1117????? (3)证明:对任意的整数m?4,有
a4a5am8解:(Ⅰ)b?分析:⑴由递推公式易求:a1=1,a2=0,a3=2;
⑵由已知得:an?Sn?Sn?1?2an?(?1)?2an?1?(?1)化简得:an?2an?1?2(?1)n?1nn?1(n>1)
anan?1anan?122??2?2???2[?] ,nn?1nn?133(?1)(?1)(?1)(?1)an22?故数列{}是以为首项,公比为?2的等比数列. ?a?1(?1)n33an212n?2n?1??(?)(?2)∴a?[2?(?1)n] nn33(?1)32n?2∴数列{an}的通项公式为:an?[2?(?1)n].
3故
⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。而左边
=
11??a4a5?1311?[2?3?am22?12?1?1],如果我们把上式中的分母中的?1去掉,就可利用等比m?2m2?(?1)数列的前n项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:
11?, 2223111,因此,可将保留,再将后面的项两两组合后放缩,即可求和。这里需要对m进行?342222?1分类讨论,(1)当m为偶数(m?4)时,
(2)当m是奇数(m?4)时,m?1为偶数,
1117????所以对任意整数m?4,有?。 a4a5am811??22?123?111??342?12?1本题的关键是并项后进行适当的放缩。 3.(07武汉市模拟)定义数列如下:a1??2,an?1?an?an?1,n?N?
?2求证:(1)对于n?N恒有an?1?an成立;(2)当n?2且n?N,有an?1?anan?1?a2a1?1成立; (3)1?122006?111?????1 a1a2a2006分析:(1)用数学归纳法易证。
2?an?an?1得:an?1?1?an(an?1)?an?1?an?1(an?1?1)
……a2?1?a1(a1?1)
以上各式两边分别相乘得:an?1?1?anan?1?a2a1(a1?1),又a1?2
1111?????1, (3)要证不等式1?2006?a1a2a20062111????可先设法求和:,再进行适当的放缩。 a1a2a20061112006???1??22006 ?1又a1a2?a2006?a1a1?1a2007?1a1a2?a200611?1??1?2006?原不等式得证。
a1a2?a20062(2)由an?1本题的关键是根据题设条件裂项求和。
用放缩法处理数列和不等问题(学生版)
一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列?an?的前n项的和Sn,满足2(1)数列?an?的通项公式;
Sn?an?1,试求:
11,数列?bn?的前n项的和为Bn,求证:Bn?
anan?1241n?12真题演练1:(06全国1卷理科22题)设数列?an?的前n项的和,Sn?an??2?,n?1,2,3,333(2)设bn?
2n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tn?,n?1,2,3,Sn二.先放缩再求和
1.放缩后成等比数列,再求和
例2.等比数列
2,证明:
?Ti?i?1n3. 2?an?中,a1,前n项的和为Sn,且S7,S9,S8成等差数列. ??12an1设bn?,数列?bn?前n项的和为Tn,证明:Tn?.
31?an真题演练2:(06福建卷理科22题)已知数列
?an?满足a1?1,an?1?2an?1(n?N*).
?an?的通项公式;
b?1b?1(II)若数列?bn?满足44(I)求数列
124bn?1?(an?1)bn(n?N*),证明:数列?bn?是等差数列; an1aan*(Ⅲ)证明:??1?2?...?n?(n?N).
23a2a3an?122.放缩后为“差比”数列,再求和 例3.已知数列{an}满足:a1?1,an?1?(1?nn?1)a(n?1,2,3?)a?a?3?.求证: nn?1n2n2n?123.放缩后成等差数列,再求和
例4.已知各项均为正数的数列{an}的前n项和为Sn,且an?an?2Sn.
共分享92篇相关文档