当前位置:首页 > 【中考数学历年真题】2019年四川省凉山州中考数学试卷
∴AC=BC=2,AB=2BC,
∴BC=2,AB=4, ∴OA=2,
即⊙O的半径是2; 故答案为:2.
【点评】本题考查的是垂径定理、圆周角定理、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键. 16.(4分)在?ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是 4:25或9:25 .
【分析】分AE:ED=2:3、AE:ED=3:2两种情况,根据相似三角形的性质计算即可.
【解答】解:①当AE:ED=2:3时, ∵四边形ABCD是平行四边形, ∴AD∥BC,AE:BC=2:5, ∴△AEF∽△CBF,
∴S△AEF:S△CBF=()2=4:25; ②当AE:ED=3:2时,
同理可得,S△AEF:S△CBF=()2=9:25, 故答案为:4:25或9:25.
【点评】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.
17.(4分)将抛物线y=(x﹣3)2﹣2向左平移 3 个单位后经过点A(2,2). 【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.
【解答】解:∵将抛物线y=(x﹣3)2﹣2向左平移后经过点A(2,2), ∴设平移后解析式为:y=(x﹣3+a)2﹣2, 则2=(2﹣3+a)2﹣2,
解得:a=3或a=﹣1(不合题意舍去),
故将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2). 故答案为:3.
【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.
三、解答题(共5小题,共32分) 18.(5分)计算:tan45°+(
﹣
)0﹣(﹣)﹣2+|
﹣2|.
【分析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.
【解答】解:原式=1+1﹣4+(2﹣
)=
.
【点评】本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握负整数指数幂、特殊角的三角函数值等知识.
19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.
【分析】注意到(a+3)2可以利用完全平方公式进行展开,(a+1)(a﹣1)利润平方差公式可化为(a2﹣1),则将各项合并即可化简,最后代入a=计算. 【解答】解:
原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8 =2a+2
将a=﹣代入原式=2×(﹣)+2=1
进行
【点评】本题主要考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变
20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.
【分析】根据正方形的性质对角线垂直且平分,得到OB=OA,根据AM⊥BE,即可得出∠MEA+∠MAE=90°=∠AFO+∠MAE,从而证出Rt△BOE≌Rt△AOF,得到OE=OF.
【解答】证明:∵四边形ABCD是正方形. ∴∠BOE=∠AOF=90°,OB=OA. 又∵AM⊥BE,
∴∠MEA+∠MAE=90°=∠AFO+∠MAE, ∴∠MEA=∠AFO. ∴△BOE≌△AOF(AAS). ∴OE=OF.
【点评】本题主要考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:
(1)参加此次诗词大会预选赛的同学共有 40 人;
(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为 90° ; (3)将条形统计图补充完整;
(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.
【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数; (2)用360°乘以二等奖人数占被调查人数的比例即可得; (3)计算出一等奖和二等奖的人数,然后补全条形统计图;
(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.
【解答】解:(1)参加此次诗词大会预选赛的同学共有18÷45%=40(人), 故答案为:40;
(2)扇形统计图中获三等奖的圆心角为360°×故答案为:90°.
(3)获二等奖的人数=40×20%=8,一等奖的人数为40﹣8﹣10﹣18=4(人), 条形统计图为:
=90°,
共分享92篇相关文档