当前位置:首页 > 华师一附中2015年高中招生考试数学模拟试题
华师一附中2015年高中自主招生考试 数学模拟试题
考试时间:80分钟 卷面满分:150分
一、选这题(本大题共6小题,每小题6分,共36分) 1、已知实数a、b、c满足
a?b?c?(a2?2005)(b?6)?|10?2b|?2, 则代数
式ab+bc的值为( ) A、36 B、-36 C、18 D、-18
2、如图,菱形纸片ABCD中,?A?60?,将纸片折叠,点A、D分别落在A’、D’处,且A’D’经过B,EF为折痕,当D’F?CD时,CFDFD的值为 ( ) AFA.3?13?1E2 B B.323?1C6 C.6 D.
8 A'BD'3、在平面直角坐标系中,如果直线y=kx与函数y=
??
2x+4(x <-3)?-2(-3≤x ≤3)的图象恰有3个不同的交点,则k的取值范围是( ) ??2x-8(x>3)
A、
23?k?2 B、k<2 C、?23?k?2 D、-2 A.18° B.16° C.15° D.14° 5、如图,以△ABC的每一条边为边作三个正三角形△ABD、△BCE和△ACF.已知这三个正三角形构成的图形中,甲、乙阴影部分的面积和等于丙、丁阴影部分的面积和,则∠FCE=( ) A.130° B.140° C.150° D.160° D F 丙 E 甲 C 乙 丁 6、若0°<α<45°,且sinαcosα=37,则sinα=( ).A B 16 (第5题) A、78 B、147144 C、4 D、8 二、填空题(本大题共6个小题,每小题7分,共42分) 7、已知xy?3,那么xyxx?yy的值是__________. 8、.已知实数 a,b,c 满足 a+b+c=10,且 1abcAIBGa?b?1b?c?1c?a?1417,则b?c?c?a?a?b的值是 . EDJF89、如图,在长和宽分别是8和7矩形内,放置了如图中5个大小 CKA’ 相同的正方形,则正方形的边长是 . 10、将一正五边形纸片沿其对称轴对折.旋转放置,做成科学 O7H图 1方舟模型.如图所示,该正五边形的边心距OB长为2,AC为 科学方舟船头A到船底的距离,则AC?12AB? . 11、如图是二次函数y=ax2+bx的图象,若一元二次方程ax2+bx+m=0 有实数根,则实数m的最大值为 . y?112、已知抛物线2x2?bx经过点A(4,0)。设点C(1,-3),请在抛物线的对称轴上确 定一点D,使得 AD?CD的值最大,则D点的坐标为__________. 三、解答题(本大题共5个小题,共72分) 13、 (13分)已知关于x的方程(m2?1)x2?3(3m?1)x?18?0有两个正整数根(m 是 整数).△ABC的三边a、b、c满足c?23,m2?a2m?8a?0,m2?b2m?8b?0. 求:⑴ m的值;⑵ △ABC的面积. 14、(15分)如图,在直角坐标系中,四边形OABC为矩形,A(8,0),C(0,6),点M是OA的中点,P、Q两点同时从点M出发,点P沿x轴向右运动;点Q沿x轴先向左运动至原点O后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度均为每秒1个单位.以PQ为一边向上作正方形PRLQ.设点P的运动时间为(t秒),正方形PRLQ与矩形OABC重叠部分(阴影部分)的面积为S(平方单位). (1)用含t的代数式表示点P的坐标; (2)分别求当t=1,t=5时,线段PQ的长; (3)求S与t之间的函数关系式; (4)连接AC.当正方形PRLQ与△ABC的重叠部分为三角形时,直接写出t的取值范围. 15、(13分)已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD,试探究AE与EF之间的数量关系. (1)如图①,若AB=BC=AC,则AE与EF之间的数量关系为________. (2)如图②,若AB=BC,你在(1)中得到的结论是否发生变化?写出你的猜想,并加以证明. (3)如图③,若AB=kBC,你在(1)中得到的结论是否发生变化?写出你的猜想,并加以证明. 16、(13分)已知点P是抛物线y?x2上一点,过点M(0,2)作半径为2的⊙M,(1)过点P作⊙M的两条切线l1、l2,若l1⊥l2,求点P的坐标;(2)若过点Q(2,4)的直线l与抛物线y?x2只有一个公共点时,求出点M与直线的距离. 17、(18分)已知:如图,在平面直角坐标系xOy中,矩形OABC y 的边OA在y轴的正半轴上,OC在x轴的正半轴上, OA=2,OC=3。过原点O作∠AOC的平分线交AB于点 D D,连接DC,过点D作DE⊥DC,交OA于点E。 A B (1)求过点E、D、C的抛物线的解析式; E (2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y x O C 轴的正半轴交于点F,另一边与线段OC交于点G。 如果DF与(1)中的抛物线交于另一点M,点M的 横坐标为 65,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理 由; (3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ 与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐 标;若不存在,请说明理由. 华师一附中2015年高中自主招生考试 参考答案 1、A 2、A 3、A 4、B 5、C 6、C 7、23或-23 8、89/17 9、5 10、5 11、3 12、(2,-6) 13、(1)m=2,(2)s=1或9?122 14、(1)P(t+4,0)(0?t?8);(2)当t=1时,PQ=2;当t=5时,PQ=8;(3)当0?t?3时,s=4t2;当3?t?4时,s=12t; 当4?t?8时,s=-6t+72;(4) 1211?t?125或t=4时,s=12。 15、(1)如图①,若AB=BC=AC,则AE与EF之间的数量关系为_AE=EF_______. (2)猜想:(1)中得到的结论没有发生变化. 证法一:如图①,过点E作EH∥AB交AC于点H,则 ∠BAC+∠1=180°,∠BAC=∠2. ∵AB=BC,∴∠BAC=∠3.∴∠2=∠3.∴EH=EC. ∵AD∥BC,∴∠D+∠DCB=180°. ∵∠BAC=∠D,∴∠1=∠DCB=∠ECF. ∵∠4=∠5,∠AEF=∠ACF,∴∠6=∠7.∴△AEH≌△FEC. ∴AE=EF. 第25题答图 证法二:如图②,过点E作EG∥AC交AB于点G,则∠BAC+∠1=180°. ∵AD∥BC,∴∠D+∠DCB=180°,∠2=∠3. ∵∠BAC=∠D,∴∠1=∠DCB=∠ECF,∠B=∠4. ∵∠AEF=∠4,∴ ∠B=∠AEF. ∵∠B+∠GAE=∠AEF+∠CEF,∴∠GAE=∠CEF. ∵AB=BC,∴∠BAC=∠BCA. ∵GE<AC,∴四边形AGEC是等腰梯形. ∴AG=CE.∴△AEG≌△EFC. ∴AE=EF. (3)猜想:AE=kEF. 证法一:如图③,过点E作EH∥AB,交AC于点H,则△HEC∽△ABC. ?HEAB?ECHEABBC.?EC?BC?k 同(2)可证 ∠AHE=∠FCE,∠EAH=∠CFE. ∴△AEH∽△FEC.?AEFE?EHEC?k. 即AE=kEF. 证法二:如图④,过点E作EG∥AC,交AB于点G,则△GBE∽△ABC. ?GBAB?BEBC. ?GBBE?ABBC?k.∴GB=kBE,AB=kBC. ?AGAB?GBkBC?kBEEC?BC?BE?BC?BE?k 同(2)可证 ∠GAE=∠CEF,∠AGE=∠ECF. 16、(1)易证点P、M和两个切点组成的四边形是正方形,从而PM=2,设P坐标为(t,t2),则t2?(t2?2)4?22,t?0,3,?3,所以点P的坐标为(0,0)、(3,3)、(?3,3);(2)若直线l平行与y轴,直线l即x=2,此时点M与直线l的距离为2;若直线l不平行与y轴,可求得直线l为y?4x?4,易求得点M与直线l的距离为61717. 17、(1)由已知,得C(3,0),D(2,2), ?ADE?90°??CDB??BCD, ?AE?ADtan?ADE?2?tan?BCD?2?12?1. ?E(0,1). ····················································································································· (1分)设过点E、D、C的抛物线的解析式为y?ax2?bx?c(a?0). 将点E的坐标代入,得c?1. 将c?1和点D、C的坐标分别代入,得 ??4a?2b?1?2,?9a?3b?1?0. ············································································································ (2分) ?a??5解这个方程组,得???6 ?13??b?6故抛物线的解析式为y??56x2?136x?1. ································································· (3分) (2)EF?2GO成立. ································································································· (4分) 点M在该抛物线上,且它的横坐标为 65, ?点M的纵坐标为125. ······························································································· (5分) y 设DM的解析式为y?kx?b1(k?0), F M 将点D、M的坐标分别代入,得 A D B ??2k?b1?2,?1E ??6?k???5k?b12 解得?2, 1?5.??b1?3.O G K C x ?DM的解析式为y??12x?3. · ·············································································· (6分) ?F(0,3),EF?2. ··································································································· (7分) 过点D作DK⊥OC于点K, 则DA?DK. ?ADK??FDG?90°, ??FDA??GDK. 又?FAD??GKD?90°, ?△DAF≌△DKG. ?KG?AF?1. ?GO?1. ····················································································································· (8分) ?EF?2GO. (3) 点P在AB上,G(1,0),C(3,0),则设P(1,2). ?PG2?(t?1)2?22,PC2?(3?t)2?22,GC?2. ①若PG?PC,则(t?1)2?22?(3?t)2?22, 解得t?2.?P(2,2),此时点Q与点P重合. ?Q(2,2). ···················································································································· (9分) ②若PG?GC,则(t?1)2?2??22, 解得 t?1,?P(1,2),此时GP⊥x轴. GP与该抛物线在第一象限内的交点Q的横坐标为1, ?点Q的纵坐标为73. ?Q??7??1,3??. ················································································································ (10分) ③若PC?GC,则(3?t)2?22?22, 解得t?3,?P(3,2),此时PC?GC?2,△PCG是等腰直角三角形. 过点Q作QH⊥x轴于点H, y 则QH?GH,设QH?h, Q (QD ). A ( P) ?Q(h?1,h)P B (P) E Q ??56(h?1)2?136(h?1)?1?h. 解得h?71,h2??2(舍去).O G H C x 5 ?Q??127??5,5??. · ·············································· (12分) 综上所述,存在三个满足条件的点Q, 即Q(2,2)或Q??1,7??或Q??12?3??5,7?5??.
共分享92篇相关文档