当前位置:首页 > 2018年湖北省黄冈市中考数学真题及答案
(2)斜坡CD的长度803?120米.
22.(1)证明:令x2?4x?kx?1,则x??4?k?x?1?0
2??∴???4?k??4?0,所以直线l与该抛物线总有两个交点
(2)解:设A,B,P的坐标分别为?x1,y1?,?x2,y2?,直线l与y轴交点为C?0,1? 由(1)知x1?x2?4?k?2,x1x2??1
2?x1?x2?2?4?4?8,x1?x2?22,
11?OAB的面积S?gOCgx1?x2??1?22?2
22??111?x1?1?2?x2?1?2(或解:解方程得?或?或S??y1?y2??42?2)
224??y1?22?1??y2??22?123.解:(1)根据表格可知:当1?x?10的整数时,z??x?20; 当11?x?12的整数时,z?10. ∴z与x的关系式为:z?????x?20,?1?x?10,x为整数?
??10,?11?x?12,x为整数????x?20,?1?x?9,x为整数?(注:z??照样给满分)
??10,?10?x?12,x为整数?(2)当1?x?8时,w???x?20??x?4???x?16x?80;
2当9?x?10时,w???x?20???x?20??x?40x?400;
2当11?x?12时,w?10??x?20???10x?200;
??x2?16x?80?1?x?8,x为整数???∴w与x的关系式为:w??x2?40x?400?9?x?10,x为整数?
????10x?200?11?x?12,x为整数???x2?16x?80?1?x?8,x为整数???(注:w??x2?40x?400?121?x?9?一样给满分)
????10x?200?10?x?12,x为整数?(3)当1?x?8时,w??x2?16x?80???x?8??144,
2∴x?8时,w有最大值为144.
当9?x?10时,w?x2?40x?400??x?20?,
2w随x增大而减小,∴x?9时,w有最大值为121,
当11?x?12时,w??10x?200,
w随x增大而减小,∴x?11时,w有最大值为90.
∵90?121?144,∴x?8时,w有最大值为144.
(注:当1?x?8时,w有最大值为144;当x?9时,w?121;
当x?10时,w?100;当x?11时,w?90;当x?12时,w?80.照样给满分) 24.解:(1)在菱形OABC中,?AOC?60o,?AOQ?30,当t?2时,
oOM?2,PM?23,QM?2343,PQ?. 33(2)当t?4时,AN?PO?2OM?2t,t?4时,P到达C点,N到达B点,点P,N在边BC上相遇.设t秒时P,N重合,则?t?4??2?t?4??8,t?即t?20. 320秒时,P,N重合. 33t,
(3)①当0?t?4时PN?OA?8,且PN//OA,PM?
1S?APN?g8g3t?43t,
220②当4?t?时,PN?8?3?t?4??20?3t,
31S?APN??43??20?3t??43?63t
220③当?t?8时,PN?3?t?4??8?3t?20,
31S?APN??43??3t?20??63t?403 2④当8?t?12时,
ON?24?2t,N到OM距离为123?3t,
N到CP距离为43?123?3t?3t?83,CP?t?4,BP?12?t,
S?APN?S菱形?S?AON?S?CPN?S?APB
??11?323??8?123?3t??t?4?22???3t?83??1?12?t??43 2??32t?123t?563 2综上S与t的函数关系式为
?43t,?0?t?4??20???403?63t,4?t????3???s??? ?20??t?8??63t?403,??3???3??t2?123t?563,?8?t?12??2(注:在第-段定义域写为0?t?4,第二段函数的定义域写为4?t?
20照样给满分) 3
共分享92篇相关文档