当前位置:首页 > 2019-2020中考数学试卷(及答案)
下: 种子数量 出芽种子数 A 发芽率 出芽种子数 B 发芽率 100 96 0.96 96 0.96 200 165 0.83 192 0.96 500 491 0.98 486 0.97 1000 984 0.98 977 0.98 2000 1965 0.98 1946 0.97 下面有三个推断:
①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;
③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).
三、解答题
21.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量). (1)求y1与y2的函数解析式.
(2)求每天的销售利润W与x的函数解析式.
(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?
22.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人? 23.解方程:
x2??1. x?1xk(x>0)的图象交于点A(m,x24.如图,在平面直角坐标系中,直线AB与函数y=
2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使
1OC,且△ACD的面积是6,连接BC. 2(1)求m,k,n的值; (2)求△ABC的面积.
OD=
25.某公司销售两种椅子,普通椅子价格是每把180元,实木椅子的价格是每把400元. (1)该公司在2019年第一月销售了两种椅子共900把,销售总金额达到了272000元,求两种椅了各销售了多少把?
(2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降30元后销售,实木椅子每把降价2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上一月全月普通椅子的销售量多了
10a%:实木椅子的销售量比第一月全月实木椅子的销售3量多了a%,这一周两种椅子的总销售金额达到了251000元,求a的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】
试题分析:384 000=3.84×105.故选C. 考点:科学记数法—表示较大的数.
2.B
解析:B 【解析】 【分析】
①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解. 【详解】
①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4; ②点P在BC上时,3<x≤5,
∵∠APB+∠BAP=90°, ∠PAD+∠BAP=90°, ∴∠APB=∠PAD, 又∵∠B=∠DEA=90°, ∴△ABP∽△DEA,
ABAPABAP ?=,
DEADDEAD3x即?, y4
∴∴y=
12, x纵观各选项,只有B选项图形符合, 故选B.
3.D
解析:D 【解析】
根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:
A、x2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误; B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故选项错误; C、x2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误; D、x2﹣6x+9=(x﹣3)2,故选项正确. 故选D.
4.A
解析:A 【解析】 【分析】
先化成一般式后,在求根的判别式,即可确定根的状况. 【详解】
解:原方程可化为:x2?2x?4?0,
\\a=1,b??2,c??4,
???(?2)2?4?1?(?4)?20?0, ?方程由两个不相等的实数根.
故选:A.
【点睛】
本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.
5.A
解析:A 【解析】 【分析】
①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OEB得△EOB≌△CMB;
③先证△BEF是等边三角形得出BF=EF,再证?DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2. 【详解】 试题分析:
①∵矩形ABCD中,O为AC中点, ∴OB=OC, ∵∠COB=60°, ∴△OBC是等边三角形, ∴OB=BC,
∵FO=FC, ∴FB垂直平分OC, 故①正确;
②∵FB垂直平分OC, ∴△CMB≌△OMB, ∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO, ∴△FOC≌△EOA,
∴FO=EO, 易得OB⊥EF, ∴△OMB≌△OEB, ∴△EOB≌△CMB, 故②正确; ③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE, ∴△BEF是等边三角形, ∴BF=EF,
∵DF∥BE且DF=BE, ∴四边形DEBF是平行四边形, ∴DE=BF, ∴DE=EF, 故③正确;
④在直角△BOE中∵∠3=30°, ∴BE=2OE, ∵∠OAE=∠AOE=30°, ∴AE=OE, ∴BE=2AE,
∴S△AOE:S△BOE=1:2, 又∵FM:BM=1:3,
33 S△BCF= S△BOE 44∴S△AOE:S△BCM=2:3 故④正确;
∴S△BCM =
所以其中正确结论的个数为4个
考点:(1)矩形的性质;(2)等腰三角形的性质;(3)全等三角形的性质和判定;(4)线段垂直平分线的性质
6.A
解析:A 【解析】 【分析】
共分享92篇相关文档