云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 新沪科版八年级数学下册《19章 四边形 19.2 平行四边形 三角形的中位线定理》教案 - 9

新沪科版八年级数学下册《19章 四边形 19.2 平行四边形 三角形的中位线定理》教案 - 9

  • 62 次阅读
  • 3 次下载
  • 2025/5/1 4:34:29

巧用三角形中位线的两种关系

学习了三角形的中位线定理后,我们不难发现,该定理其实包括如下两种关系: 1. 位置关系,即三角形的中位线平行于第三边; 2. 数量关系,即三角形的中位线等于第三边的一半。

解答某些与线段中点有关的问题时,要注意灵活巧用这两种关系。

例1. 如图1所示,EF是△ABC的中位线,BD平分交EF于D,若ED=2,则EB=________________。

图1

解:在△ABC中, 因为EF是△ABC的中位线 所以EF//BC 所以 因为 所以 所以

例2. 如图2所示,在△ABC中,AC=5,中线AD=4,则AB边的取值范围是( ) A. C.

B. D.

图2

解:取AB的中点E,连结DE 因为

所以DE是△ABC的中位线 所以 因为 所以 所以 应选B。

例3. 如图3所示,四边形ABCD中,AC与BD相交于E,BD=AC,M,N分别是AD,

BC的中点,MN分别交AC,BD于F,G,求证:EF=EG。

图3

证明:取AB的中点P,连结PM,PN

因为M,P分别是AB,AD的中点 , 所以PM是△ABD的中位线 所以 , 同理 所以 因为BD=AC 所以 所以 所以

练习:

1. 如图4所示,AE平分,垂足为E,D为BC的中点,,则BED=_____________。

图4

2. 如图5所示,在△ABC中,AD是中线,E是AD的中点,F是BE的延长线与AC的交点。求证:。

图5

答案与提示:

1. 延长BE交AC于F,则,那么,DE是△BCF的中位线,所以有。 2. 取BF的中点G,连结DG,则DG是△BCF的中位线,,再证明AF=DG。

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

巧用三角形中位线的两种关系 学习了三角形的中位线定理后,我们不难发现,该定理其实包括如下两种关系: 1. 位置关系,即三角形的中位线平行于第三边; 2. 数量关系,即三角形的中位线等于第三边的一半。 解答某些与线段中点有关的问题时,要注意灵活巧用这两种关系。 例1. 如图1所示,EF是△ABC的中位线,BD平分交EF于D,若ED=2,则EB=________________。 图1 解:在△ABC中, 因为EF是△ABC的中位线 所以EF//BC 所以 因为 所以 所以 例2. 如图2所示,在△ABC中,AC=5,中线AD=4,则AB边的取值范围是( ) A.

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com