当前位置:首页 > 基于PLC控制的桥式起重机的设计
1 设计要求及方案选择
1.1 系统设计要求
现有一台15/3t交流桥式起重机,采用起重用绕线式交流异步电动机拖动,其中横梁的移动使用2台相同的电动机,小车的移动使用一台电动机,主钩和副钩各使用一台电动机。5台电动机均采用了转子串电阻调速方式,以增加启动转矩,减少启动电流。由于工作环境恶劣,空气中的水分对电机滑环、碳刷及接触器腐蚀较大,加上任务重,操作流程复杂,冲击电流大,触头消蚀严重,碳刷冒火,电机及转子绕组所串电阻烧损、断裂故障时有发生,对生产影响较大。转子串电阻调速,机械特性软,负载变化时,转速也变化,调速效果差,所串电阻长期发热,电能浪费大,效率低。要求对其进行改造,减少电路中的冲击电流,改变调速方式,减少操作人员劳动强度,提高系统效率。 1.2 题目分析
题目中原有的交流桥式起重机系统采用接触器控制电源电路的启动、停止、限位;使用凸轮控制器控制大车、小车、副钩电动机的前进、后退、零位、加速、减速;而主钩的前进、后退、零位、加速、减速等动作使用主令控制器完成,并且各电机均设电磁抱闸装置刹车。5个电动机都使用转子串电阻调速,其中主钩电动机串有7级电阻,其余电动机串有5级电阻。
经分析,电路中凸轮控制器的触点上流过的即是电动机的工作电流,操作开关开合时容易出现冲击电流,减少了接触器触点寿命。为了延长使用寿命,触点往往做得十分笨重,不仅增加了设备体积,也给操作带来了不变;转子串电阻的调速方式使机械特性变软,所串电阻长期发热,极大地浪费了电能;每一台电动机配备一台凸轮控制器或主令控制器的方式使得操作面板上的控制开关种类繁多,容易出现误操作。
为了克服以上缺点,在改造中采用PLC代替接触器开关,使设备体积减小,操作强度也随之下降;使用桥式专用变频器代替转子串电阻调速,增加了机械特性硬度,也不存在发热问题,提高了系统效率;5台电动机共用一台主令控制器控制,减少了按钮数量,从而提高了系统可靠性。原有系统中的电磁抱闸装置,过电流保护装置,动作限位开关,横梁栏杆安全开关,舱门安全开关等安保装置均予以保留,以提高整个系统的可靠性。 1.3 系统方案选择
从以上的题目分析来看,改造后的交流桥式起重机控制系统包含如下几个部分:主令控制器、限位器、保护输入、PLC、4台变频器、5台电动机(大车电动机两台),其控制框图如下图
2
图1 交流桥式起重机控制系统框图
本设计使用PLC实现主令控制器的开合表的逻辑功能,以代替原有系统中为每台电动机设置一台主令控制器或凸轮控制器的设计。为了避免主令控制器占用过多的I/O口,使用精简后的3档主令控制器。限位器与保护输入均保留传统的开关器件,并将其输入到PLC中以便处理。
本系统共有输入点25个,输出点28个,共53个I/O口。采用西门子S7-200(224)型PLC作为控制核心,该PLC集成RS-485通信接口,具有较强的通信能力;拥有7个扩展模块,可连接外部数字量扩展模块;拥有继电器输出、晶体管输出两种方式,具有较强的控制功能。本系统使用晶体管输出,寿命长,可适用于频繁开合的场合。由于S7-200(224)型PLC的本机数字量I/O为14入/10出,不能满足本系统对I/O口的要求,因此外部扩展3个EM223(8入/8出)模块。
由于起重机机构多为恒转矩负载,故选用带低速转矩提升功能的电压型变频器。平移机构惯量较大,负载变化相对小,属于阻力性负载,故大车、小车选用U/f 开环控制方式的安川CIMR-F7B4045 型变频器;起升机构惯量较小,负载变化大,属于位能性负载,为获得快速的动态响应,实现对转矩的快速调节,获得理想的动态性能,通常采用矢量控制方式,故主副钩的升降机构选用安川CIMR-G7B4055型变频器,采用闭环矢量控制方式可获得稳定的工作状态和良好的机械特性。
桥式起重机的电气传动系统有大车电动机两台、小车电动机一台、15吨主钩、3吨副钩提升电动机各一台,这次设计总的思路是用4台变频器来控制5台电机。起重机提升和运行机构的调速比一般不大于1:20,且为断续工作制,通常接电持续在60%以上,负载多为大惯量系统。因此起重机的运行机构选用普通电机,提升机构的电机选用适合频繁起动、转动惯量小、起动转矩大的变频用电机。电动机功率的选择,必须根据生产的需求来决定。一般来说,起重机用电动机比一般工业生产机械所用的电动机的功率大10%左右。
3
2 系统硬件设计
由于本设计采用一台S7-200型PLC控制四台变频器操作5台电动机的运行,因此,四台变频器所需的输入口线均接在这台PLC上,再由四台变频器分别控制相应的电动机。下图(图2)画出了桥式起重机的PLC控制原理图。为简便起见,图中并未画出全部的I/O口线。
图2 桥式起重机的PLC控制原理图
2.1 PLC实现的主令控制器①
继电接触器为基础的桥式起重机电路,往往以凸轮控制器②实现大车、小车、副钩的操作,以主令控制器加继电器屏实现主钩的操作。但凸轮控制器操作中同时切换的触点毕竟太多,且切换的又多是电动机主电路的触点,为了切换大容量电流,触点都制造得厚重,这就为操作带来了阻力和很大的劳动强度。另一方面,凸轮控制器中有形的触点在频繁的切除中很容易出故障,给维修带来了不便。本设计中设法使用PLC实现起重机中各电动机主辅电路的逻辑连接关系,将有形的触点化为PLC内部无形的逻辑关系。表1给出了一个经精简后的主令控制器的开合表,并为各挡位接通的触点安排了PLC的输入口。为满足大电流切换的需要,
又名主令开关,主要用于电气传动装置中,按一定的顺序分合触头,达到发布命令或其他控制线路联锁、转换的目的,包含凸轮控制器。 ②
亦称接触式控制器,是一种大型的控制电器,多档位、多触点,利用手动操作,转动凸轮去接通和分断通过大电流的触头转换开关。与主令控制器的区别在于其不需要加继电接触器就可以分断大电流。
①
4
PLC的输出必须连接接触器及继电器。
表1 三档主令开关开合表
输入端口 I0.5 I0.6 I0.2 注 x--接通
向前 x 零位 x 向后 x 本设计使用图3所示的一个三档位主令控制器及两只升降速按钮作为操作器件,使用PLC及接触器模拟凸轮控制器工作。三档位的主令控制器的开合表如表1所示。该主令控制器可以实现电动机正向运行选择及反向运行选择间的机械互锁,汽车档位式的设计符合起重机操作人员的操作习惯,使用两只按钮进行升降速也更加方便,其实现的控制要求主要有: ⑴ 在按动接于I1.1及I1.0的按钮时,使加减速档位存储器VB100中存储的数字在1~5间依顺序变化,以控制输入电动机的电源频率大小。实现方法是加1及减1指令,在VB100中数值小于5时可加操作,大于0时可减操作。
⑵ 电动机的方向控制由主令控制器实现,手柄置向前位时,I0.5接通,正转接触器工作,驱动变频器带动电动机正转;手柄置向后位时,I0.6接通,反转接触器工作,带动电动机反转。由正转到反转,或由反转到正转都必须经过零位,手柄位于零位表示已关断正在运行的接触器,准备接通下一个接触器,同时零位亦将VB100清零,变频器将处于速度档位为0的位置。
图3 三档主令控制器及变速按钮示意图
2.2 限位器及安保电路
桥式起重机作为工矿、机械中重要的起吊设备,对安全性与可靠性的要求较高。起重机设有紧急开关,可以在出现事故时紧急停止,横梁(大车,下同)设有栏杆安全开关,操作舱设有舱口安全开关,横梁、小车、主副钩均设有安全限位开关和电磁抱闸系统,电路设有过电流继电器。这些保护可以保证起重机的安全运行,现分别叙述这些保护模块的功能。另外变频器中包含短路、过压、缺相、失压、过流、超速、接地等各种保护功能和故障自诊断及显示报警功能,可在电动机出现这些故障时起保护作用,在此不再赘述。
5
共分享92篇相关文档