云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 山东省高三数学一轮复习 专题突破训练 三角函数 文

山东省高三数学一轮复习 专题突破训练 三角函数 文

  • 62 次阅读
  • 3 次下载
  • 2025/6/3 9:06:50

(I)求角A的大小: (Ⅱ)若

,△ABC的面积

,试判断△ABC的形状,并说明理由.

11、(泰安市2015届高三二模)已知a,b,c是△ABC对边,且a+b=且AD=2,求△ABC最大值.

csinA+ccosA,为BC的中点,

12、已知a,b,c为△ABC的内角A,B,C的对边,满足数f(x)?sin?x(??0)在区间[0,(Ⅰ)证明:b?c?2a;

(Ⅱ)若f()?cosA,证明△ABC为等边三角形.

sinB?sinC2?cosB?cosC,函?sinAcosA?3]上单调递增,在区间上单调递减.

?9

13、已知向量m?(sin?A?B?,sin(?2?A)),n?(1,2sinB),且m?n??sin2C,其中A、B、C分

别为?ABC的三边a、b、c所对的角.

(Ⅰ)求角C的大小; (Ⅱ)若sinA?sinB?2sinC,且S?ABC?

参考答案

一、选择、填空题 1、【答案】B

3,求边c的长.

2、【解析】:y? ?T?3311??1?sin2x?cos2x?sin2x?cos2x??sin?2x??? 22226?2?2???. 2

答案:T??

ab1333π

3、B [解析] 由正弦定理=,即==,解之得cosA=,∴A=,B

sinAsinBsinAsinB2sinAcosA26ππ22

=,C=,∴c=a+b=324、A 5、2 6、A 7、A 8、A

9、解答: 解:∵函数f(x)=2sin(2x+φ)(|φ|<∴

=2sinφ,由(|φ|<

),

=0,可解得:x=﹣

,则f(x)的图象的一个对称中心是

,可得:φ=

的图象过点

(

2

2

3)+1=2.

∴f(x)=2sin(2x+∴由五点作图法令2x+故选:B.

10、答案C .解析:由图象可得A?1,??2,??移

ππ所以f(x)?sin(2x?),将f(x)的图象向右平33π个单位可得g(x)的图象,故选C. 611、D

12、解答: 解:∵f(x)=sinxcosx=sin2x, ∴g(x)=sin[2(x+

)]=cos2x,

∴2kπ﹣π≤2x≤2kπ,k∈Z可解得g(x)的单调递增区间是:x∈故选:A. 13、B 14、

1 615、D

二、解答题 1、【答案】22,1. 3

由正弦定理可得a?23c,结合ac?23即得.

试题解析:在?ABC中,由cosB?36,得sinB?. 33因为A?B?C??,所以sinC?sin(A?B)?6, 953, 96533622. ????39393因为sinC?sinB,所以C?B,C为锐角,cosC?因此sinA?sin(B?C)?sinBcosC?cosBsinC?22ccsinAac3由??23c,又ac?23,所以c?1. ?,可得a?sinCsinAsinC692、【解析】:(Ⅰ)由题意知:sinA?1?cosA?23, 3 sinB?sin?A? 由正弦定理得:

????6, ?cosA??2?3aba?sinB??b??32 sinAsinBsinA(Ⅱ)由余弦定理得:

b2?c2?a26??c2?43c?9?0?c1?3,c2?33, cosA?2bc3

又因为B?A??2为钝角,所以b?c,即c?3,

所以SVABC?方法二:

132acsinB?. 22

3、解:(1)f(x)=

==

32

-3sinωx-sin ωxcos ωx 2

31-cos 2ωx1-3·-sin 2ωx 222

31

cos 2ωx-sin 2ωx 22

π??=-sin?2ωx-?. 3??

π

因为图像的一个对称中心到最近的对称轴的距离为,

4又ω>0,

2ππ所以=4×.

2ω4因此ω=1.

π??(2)由(1)知f(x)=-sin?2x-?.

3??

3π5ππ8π

当π≤x≤时,≤2x-≤. 2333

π?3?所以-≤sin?2x-?≤1. 3?2?

3. 2

3π?3?故f(x)在区间?π,?上的最大值和最小值分别为,-1. 2?2?因此-1≤f(x)≤

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

(I)求角A的大小: (Ⅱ)若,△ABC的面积,试判断△ABC的形状,并说明理由. 11、(泰安市2015届高三二模)已知a,b,c是△ABC对边,且a+b=且AD=2,求△ABC最大值. csinA+ccosA,为BC的中点, 12、已知a,b,c为△ABC的内角A,B,C的对边,满足数f(x)?sin?x(??0)在区间[0,(Ⅰ)证明:b?c?2a; (Ⅱ)若f()?cosA,证明△ABC为等边三角形. sinB?sinC2?cosB?cosC,函?sinAcosA?3]上单调递增,在区间上单调递减. ?9 13、已知向量m?(sin?A?B?,sin(?2?A)),n?(1,2sinB)

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com