云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 选修2-1教案新课标高中数学人教A版选修2-1全套教案(75页)

选修2-1教案新课标高中数学人教A版选修2-1全套教案(75页)

  • 62 次阅读
  • 3 次下载
  • 2025/6/30 2:18:28

存在一个矩形不都是平行四边形;

命题(2)的否定是“并非每一个素数都是奇数;”,也就是说,

存在一个素数不是奇数; 2

命题(3)的否定是“并非?x∈R, x-2x+1≥0”,也就是说,

2

?x∈R, x-2x+1<0; 后三个命题都是特称命题,即具有形式“?x?M,p(x)”。

其中命题(4)的否定是“不存在一个实数,它的绝对值是正数”,也就是说,

所有实数的绝对值都不是正数;

命题(5)的否定是“没有一个平行四边形是菱形”,也就是说,

每一个平行四边形都不是菱形;

2

命题(6)的否定是“不存在x∈R, x+1<0”,也就是说,

2

?x∈R, x+1≥0;

4.发现、归纳

从命题的形式上看,前三个全称命题的否定都变成了特称命题。后三个特称命题的否定都变成了全称命题。

一般地,对于含有一个量词的全称命题的否定,有下面的结论: 全称命题P:

?x?M,p(x)

它的否定¬P

?x?M,p(x)

特称命题P:

?x?M,p(x)

它的否定¬P:

?x∈M,¬P(x)

全称命题和否定是特称命题。特称命题的否定是全称命题。 5.练习、感悟

判断下列命题是全称命题还是特称命题,并写出它们的否定: (1) p:所有能被3整除的整数都是奇数; (2) p:每一个四边形的四个顶点共圆;

2

(3) p:对?x∈Z,x个位数字不等于3;

2

(4) p:? x∈R, x+2x+2≤0; (5) p:有的三角形是等边三角形; (6) p:有一个素数含三个正因数。 6.小结与作业

(1)小结:如何写出含有一个量词的命题的否定,原先的命题与它的否定在形式上有什么变化?

(2)作业:P29习题1.4A组第3题:B组(1)(2)(3)(4)

第二章 圆锥曲线与方程

2.1曲线与方程

2.1.1曲线与方程2.1.2求曲线的轨迹方程

一、教学目标 (一)知识教学点

使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.(二)能力训练点

通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力. (三)学科渗透点

通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础. 二、教材分析

1.重点:求动点的轨迹方程的常用技巧与方法.

(解决办法:对每种方法用例题加以说明,使学生掌握这种方法.)2.难点:作相关点法求动点的轨迹方法.

(解决办法:先使学生了解相关点法的思路,再用例题进行讲解.) 三、活动设计

提问、讲解方法、演板、小测验. 四、教学过程 (一)复习引入

大家知道,平面解析几何研究的主要问题是: (1)根据已知条件,求出表示平面曲线的方程; (2)通过方程,研究平面曲线的性质.

我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研

究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法

由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.

例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;

(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析:

动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0.

即x2+y2=4R2或x2+y2=0.

故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析:

题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵kOM·kAM=-1,

其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法

利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.

直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

分析:

∵点P在AQ的垂直平分线上, ∴|PQ|=|PA|.

又P在半径OQ上.

∴|PO|+|PQ|=R,即|PO|+|PA|=R.

故P点到两定点距离之和是定值,可用椭圆定义 写出P点的轨迹方程.

解:连接PA ∵l⊥PQ,∴|PA|=|PQ|. 又P在半径OQ上. ∴|PO|+|PQ|=2.

由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.

3.相关点法

若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).

例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程. 分析:

P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系. 解:设点P(x,y),且设点B(x0,y0)

∵BP∶PA=1∶2,且P为线段AB的内分点.

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

存在一个矩形不都是平行四边形; 命题(2)的否定是“并非每一个素数都是奇数;”,也就是说, 存在一个素数不是奇数; 2命题(3)的否定是“并非?x∈R, x-2x+1≥0”,也就是说, 2?x∈R, x-2x+1<0; 后三个命题都是特称命题,即具有形式“?x?M,p(x)”。 其中命题(4)的否定是“不存在一个实数,它的绝对值是正数”,也就是说, 所有实数的绝对值都不是正数; 命题(5)的否定是“没有一个平行四边形是菱形”,也就是说, 每一个平行四边形都不是菱形; 2命题(6)的否定是“不存在x∈R, x+1<0”,也就是说, 2?x∈R, x+1≥0; <

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com