云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 毕业论文原稿

毕业论文原稿

  • 62 次阅读
  • 3 次下载
  • 2025/6/22 23:56:16

学校编码:15014 分类号 密级

学号:11104010110 UDC

本科毕业论文(设计)

利用函数的性质证明不等式

学生姓名:陈美雪

所属院部:数学与统计学院

专 业:应用数学 指导教师:马丽娜

2015年 5 月 1日

赤峰学院本科毕业论文(设计)原创性声明

兹呈交的毕业论文(设计),是本人在导师指导下独立完成的研究成果。本人在论文(设计)写作中参考的其他个人或集体的研究成果,均在文中以明确方式标明。本人依法享有和承担由此论文(设计)而产生的权利和责任。

声明人(签名):

指导教师(签名):

年 月 日

摘要:不等式是数学中不可缺少的工具之一,有许多不等式在数学研究中有着重要的作用。在中学数学中证明不等式的方法有许多,但用初等数学知识证明不等式比较困难。本文将证明不等式的若干方法集中在利用函数的性质,如单调性、拉格朗日中值定理、柯西中值定理、泰勒公式、函数的极值与最值、函数的凹凸性来证明不等式,从而使不等式的证明方法更加完善。

关键词:不等式、证明、方法

一、利用函数的单调性

定理1 设函数f(x)在区间I上可导,则f(x)在I上单调递增(减)的充分必要条件是

f'(x)?0(f'(x)?0).

定理2 若函数f(x)在(a,b)上可导,则f在(a,b)上严格递增(递减)的充要条件是 1) 对一切x?(a,b),有f(x)?0(f(x)?0). 2) 在任意(a,b)子区间上f(x)?0.

定理3 设函数f(x)在区间I上可微,若f(x)?0(f(x)?0),则f(x)在I上严格递增(减).

例1 证明不等式

'''''ex?1?x,x?0.

证明:设f(x)?e?1?x,则f(x)?e?1,故当x?0时,f(x)?0,f严格递增;当x?0,

x'x'f'(x)?0,f严格递减。又由于f在

x?0处连续,则当

x?0时

f'(x)?f(0)?0.

从而得证

ex?1?x,x?0.

例2 证明不等式

x3sinx?x? (x?0).

6x3证明:令f(x)?sinx?x?,则当x?0时,有

6f''(x)?f'(x)?x?sinx?0,

??'

'所以f(x)在x?0严格单调增加,即当x?0时有

x2f(x)?cosx?1??f'(0)?0.

2'由此可知f(x)在?0,???也是严格单调增加的,这样,当x?0时,便成立

x3f(x)?sinx?x??f(0)?0.

6

二、利用拉格朗日(Lagrange)中值定理

定理1 (罗尔(Rolle)中值定理) 若函数满足以下条件: 1.f在闭区间[a,b]上连续; 2.f在开区间(a,b)上可导; 3.f(a)?f(b);

则在(a,b)内至少存在一点?,使得

f'(?)?0.

定理2 (拉格朗日(Lagrange)中值定理) 若函数满足如下条件 1.f在闭区间[a,b]上连续; 2.f在开区间(a,b)上可导; 则在(a,b)上至少存在一点?,使得

f'(?)?

f(b)?f(a).

b?a'推论1 若函数f(x)在区间I上可导,且f(x)?0,x?I,则f为I上的一个常量函数.

推论2 若函数f(x)和g(x)均在区间I上可导,且f(x)?g(x),x?I,则在区间I上f(x)与g(x)之相差某一常数c,即f(x)?g(x)?c.

推论3 (导数极限定理)设函数f(x)在点x0的某邻域U(x0)内连续,在Uo(x0)内可导,且极限limf(x)存在,则

x?x0'''1.f(x)在点x0处可导; 2. f(x0)?limf(x);

x?x0''

1.直接利用公式

例3 证明arctanb?arctana?b?a,其中a?b. 证明: 设f(x)?arctanx,则

搜索更多关于: 毕业论文原稿 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

学校编码:15014 分类号 密级 学号:11104010110 UDC 本科毕业论文(设计) 利用函数的性质证明不等式 学生姓名:陈美雪 所属院部:数学与统计学院 专 业:应用数学 指导教师:马丽娜 20

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com