当前位置:首页 > 概率论与数理统计课后习题答案下
(2) 验证S2=
12(?Xi?nX);
n?1i?12nn21?[?E(Xi2)?nE(X)]n?1i?1(3) 验证E(S2)=σ2. 【
证
】
(1)
???21?222????n?(??u)?n??u????2.n?1??n??
n1n1?1n?115.?对随机变量X和Y,已知D(X)=2,D(Y)=3,Cov(X,Y)=??1, E(X)?E??Xi??E(?Xi)??E(Xi)??nuu.
nnnni?1i?1?i?1?计算:Cov(3X??2Y+1,X+4Y??3).
n1n?1n?1D(X)?D??Xi??2D(?Xi)Xi之间相互独立2?DXi ?Cov(3ni?1X?2Y?1,X?4Y?3)?3D(X)?10Cov(X,Y)?8Di?1?ni?1?n【解】
1?22?2?n??. nn
?3?2?10?(?1)?8?3??28
(因常数与任一随机变量独立,故Cov(X,3)=Cov(Y,3)=0,其余类似).
2i2(2) 因
?(Xi?1nni16.设二维随机变量(?X)??(X?X?2XXi)??X?nX?2X?Xi X,Y)的概率密度为
22ii?1i?1i?1n2nn
??X?nX?2X?nX??X?nX2i2ii?1i?1n21故S?(?Xi2?nX).
n?1i?122n2
?122?,x?y?1,f(x,y)=?π
?其他.?0,试验证X和Y是不相关的,但X和Y不是相互独立的. 【解】设D?{(x,y)|x2?y2?1}.
??(3) 因
E(Xi)?u,D(Xi)??2,故
E(X)?????????xf(x,y)dxdy?1xdxdy ??πx2?y2?1E(Xi2)?D(Xi)?(EXi)2??2?u2.
同
理
因
=12π1rcos??rdrd??0.
??00πE(X)?u,D(X)??2n,故
同理E(Y)=0. 而
E(X)?从而
2?2n?u2.
CovX(Y,?)?????????? xdyx[?Ex(?)]y?[EY()f]x(y,)
112π12?xydxdy?rsin?cos?rdrd??0????nn002?2πx2?y2?π1?1E(s2)?E?(?Xi2?nX)??[E(?Xi2)?nE(X1)]
i?1?n?1i?1?n?1,
由此得下
面
1?x2
?XY?0,故X与Y不相关.
讨
论
独
立
性
,
当
|x|≤1
时
,
fX(x)?1?1?x212dy?1?x2. ππ当|y|≤1时,fY(y)1?1?y2?1?y212dx?1?y2ππ??1 . 0 1 1/8 1/8 1/8 1/8 0 1/8 1/8 1/8 1/8 验证X和Y是不相关的,但X和Y不是相互独立的.
显然
fX(x)?fY(y)?f(x,y).
【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律
易求得X,Y及XY的分布律,其分布律如下表
故X和Y不是相互独立的.
17.设随机变量(X,Y)的分布律为 X Y ??1 0 1 X P ??1 0 1 3 8??1 280 3 81
Y P 3 8??1 280 3 81
XY P 28 48 28
由期望定义易得E(X)=E(Y)=E(XY)=0. 从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0, 即X与Y的相关系数为0,从而X和Y是不相关的.
又P{X331??1}?P{Y??1}????P{X??1,Y??1}
888从而X与Y不是相互独立的.
18.设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov(X,Y),ρXY.
【解】如图,SD=
12,故(X,Y)的概率密度为
题18图
?2,(x,y)?D, f(x,y)??0,其他.?E(X)???xf(x,y)dxdy??0dx?0x?2dy?D11?x11?x1 31 62E(X2)???x2f(x,y)dxdy??0dx?02xdy?D1?1?122从而D(X)?E(X)?[E(X)]?????.
6?3?18同理E(Y)211?,D(Y)?. 31811?x而
E(XY)???xyf(x,y)dxdy???2xydxdy??dx?DD002xydy?1. 12所以
Cov(X,Y)?E(XY)?E(X)?E(Y)?1111????. 123336从而
?XY?Cov(X,Y)?D(X)?D(Y)?13611?1818??1 219.设(X,Y)的概率密度为
ππ?1sin(x?y),0?x?,0?y?,?f(x,y)=?222
?其他.?0,求协方差Cov(X,Y)和相关系数ρXY.
【解】E(X)???????????xf(x,y)dxdy??π202π/20dx?π/201πx?sin(x?y)dy?. 24
E(X)??dx?从而
2π201π2πx?sin(x?y)dy???2.
282π2πD(X)?E(X)?[E(X)]???2.
16222同理
ππ2πE(Y)?,D(Y)???2.
4162又
E(XY)??π/20dx?π/20πxysin(x?y)dxdy??1,
22?π?ππ?π?4?故 CovX(Y,?)EXY(?)E(X?)EY(??)???1??????2?44?4?2
.?XY??π?4????Cov(X,Y)(π?4)2π2?8π?164???2??2??2.
ππ?8π?32π?8π?32D(X)?D(Y)π??216220.已知二维随机变量(X,Y)的协方差矩阵为?【解】由已知知:D(X)=1,D(Y)=4,Cov(X,Y)=1.
从而
?11?,试求Z1=X??2Y和Z2=2X??Y的相关系数. ??14?D(Z1)?D(X?2Y)?D(X)?4D(Y)?4Cov(X,Y)?1?4?4?4?1?13,D(Z2)?D(2X?Y)?4D(X)?D(Y)?4Cov(X,Y)?4?1?4?4?1?4,Cov(Z1,Z2)?Cov(X?2Y,2X?Y)
共分享92篇相关文档