当前位置:首页 > 2020年高考数学二轮复习专项微专题核心考点突破专题16基本不等式的应用(解析版)
又m?0,?m?444?m?1??1?2(m?1)??1?4?1?3,当且仅当m?1取等号,所以m?1m?1m?1b?43?64, a故答案为64.
c3?c?233.已知ac?2b?0,则a?的最小值是_________. ?2b(ac?2b)2c?224c2?1??【答案】17 【解析】
8c2?1由2bac?2b??????8c2?1??2b?ac?2b2()2?32c2?1a2c??,
当且仅当2b=ac?2b时取等号,
332c2?11321?c2c?c?21c122??a??c??2a??2??2×8+1则a2?222222c?2ac21?cca21?cbac?2b4c2?1???????=17 当且仅当a2?32c2?1ca2??,c?212即a?22,b?,c?1时取等号 1?c22故答案为:17
34.已知对任意实数x,二次函数f?x??ax?bx?c恒非负,且a?b,则M?2a?b?c的最小值是__
b?a__ 【答案】3 【解析】
2由于二次函数f?x??ax?bx?c恒非负,所以a?0,b?4ac?0,所以4ac?b2,
2b2. 而0?a?b,故c?4ab222a?b?b3a?b?a?????4?b?a??3a,当且仅当3a?b?a,c?,即所以M?a?b?c?4a????34ab?ab?a4a?b?a?4a?b?a?
c?b?4a时,等号成立.故答案为3.
35.已知正项等比数列{an},满足a4?a3?2(a2?a1)?8,则a6?a5的最小值是_____ 【答案】64 【解析】
a4?a3?2(a2?a1)?a1q3?a1q2?2?a1q?a1??8?a1?82q?2? ?2?q?1??q?2?aa5?a448q46?5?a1q1q?a1q?q+1?=q2?2
2设t?q2?2?t?0? 则a8?t?2??4?6?a5?t?8?t??4???64
?t当t?4t即t?2时成立,此时q?2,a41?3 故答案为:64
共分享92篇相关文档