当前位置:首页 > (东营专版)2019年中考数学复习 专题类型突破 专题四 几何变换综合题训练
丰富丰富纷纷
【分析】 (1)根据平行四边形的判定定理(有一组对边平行且相等的四边形是平行四边形)知四边形ACC′A′是平行四边形.再根据对角线平分对角的平行四边形是菱形知四边形ACC′A′是菱形. (2)通过解直角△ABC得到AC,BC的长度,由(1)中菱形ACC′A′的性质推知AC=AA′,由平移的性质得四边形ABB′A′是平行四边形,则AA′=BB′,所以CB′=BB′-BC. 【自主解答】
平移变换命题的呈现形式主要有:(1)坐标系中的点、函数图象的平移问题;(2)涉及基本图形平移的几何问题;(3)利用平移变换作为工具解题.其解题思路:(1)特殊点法:解题的关键是学会运用转化的思想,如坐标系中图象的平移问题,一般是通过图象上一个关键(特殊)点的平移来研究整个图象的平移;(2)集中条件法:通过平移变换添加辅助线,集中条件,使问题获得解决;(3)综合法:已知条件中涉及基本图形的平移或要求利用平移作图的问题时,要注意找准对应点,看清对应边,注意变换性质的理解和运用.
3.(2018·安徽中考)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为2,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为( )
5
丰富丰富纷纷
4.如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.
(1)线段OC的长为________; (2)求证:△CBD≌△COE;
(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD1,CE1,设点E1的坐标为(a,0),其中a≠2,△CD1E1的面积为S. ①当1<a<2时,请直接写出S与a之间的函数解析式; 1
②在平移过程中,当S=时,请直接写出a的值.
4
6
丰富丰富纷纷
类型四 图形的旋转变换
(2017·潍坊中考)边长为6的等边△ABC中,点D,E分别在AC,BC边上,DE∥AB,EC=23. (1)如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.
(2)如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′,BE′.边D′E′的中点为P.
①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由; ②连接AP,当AP最大时,求AD′的值.(结果保留根号)
图1 图2
【分析】 (1)先判断出四边形MCND′为平行四边形,可得△MCE′和△NCC′为等边三角形,即可求出CC′,得出CN=CM,即证四边形MCND′为菱形;
(2)①分两种情况,利用旋转的性质,即可判断出△ACD′≌△BCE′,即可得出结论; ②先判断出点A,C,P三点共线,求出CP,AP,最后用勾股定理即可得出结论. 【自主解答】
7
丰富丰富纷纷
旋转变换问题的解题思路:(1)以旋转为背景的问题,要根据题意,找准对应点,看清对应边,注意对旋转的性质的理解和运用,想象其中基本元素,如点、线(角)之间的变化规律,再结合几何图形的性质,大胆地猜想结果并加以证明来解决问题;(2)利用旋转变换工具解决问题,要注意观察,通过旋转图形中的部分,运用旋转的性质,将复杂问题简单化.
5.(2018·菏泽中考)问题情境:
在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2 cm,AC=4 cm. 操作发现:
(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC′的延长线交于点E,则四边形ACEC′的形状是________. (2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B,A,D三点在同一条直线上,得到如图3所示的△AC′D,连接CC′,取CC′的中点F,连接AF并延长至点G,使FG=AF,连接CG,C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论. 实践探究:
(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A′点,A′C与BC′相交于点H,如图4所示,连接CC′,试求tan∠C′CH的值.
8
共分享92篇相关文档