当前位置:首页 > (东营专版)2019年中考数学复习 专题类型突破 专题四 几何变换综合题训练
丰富丰富纷纷专题四 几何变换综合题
类型一 涉及一个动点的几何问题
(2018·长春中考)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A,B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒. (1)用含t的代数式表示线段DC的长; (2)当点Q与点C重合时,求t的值;
(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式; (4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.
【分析】 (1)先求出AC,用三角函数求出AD,即可得出结论; (2)利用AD+DQ=AC,即可得出结论;
(3)分两种情况,利用三角形的面积公式和面积差即可得出结论; (4)分三种情况,利用锐角三角函数,即可得出结论. 【自主解答】
1.(2018·江西中考)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边
1
丰富丰富纷纷△APE,点E的位置随着点P的位置变化而变化.
(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是________,CE与AD的位置关系是________;
(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);
(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=23,BE=219,求四边形ADPE的面积.
类型二 涉及两个动点的几何问题
(2018·青岛中考)已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB= 16 cm,BC=6 cm,CD=8 cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2 cm/s.
2
丰富丰富纷纷点P和点Q同时出发,以QA,QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5. 根据题意解答下列问题: (1)用含t的代数式表示AP;
(2)设四边形CPQB的面积为S(cm),求S与t的函数关系式; (3)当QP⊥BD时,求t的值;
(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.
2
【分析】 (1)作DH⊥AB于点H,则四边形DHBC是矩形,利用勾股定理求出AD的长即可解决问题; (2)作PN⊥AB于N,连接PB,根据S=S△PQB+S△BCP计算即可;
(3)当QP⊥BD时,∠PQN+∠DBA=90°,∠QPN+∠PQN=90°,推出∠QPN=∠DBA,由此利用三角函数即可解决问题;
(4)连接BE交DH于点K,作KM⊥BD于点M.当BE平分∠ABD时,△KBH≌△KBM,推出KH=KM.作EF⊥ABKHBH
于点F,则△AEF≌△QPN,推出EF=PN,AF=QN,由KH∥EF可得=,由此构建方程即可解决问题.
EFBF【自主解答】
2.(2018·黄冈中考)如图,在平面直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第
3
丰富丰富纷纷一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB-BC-CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.
(1)当t=2时,求线段PQ的长; (2)求t为何值时,点P与N重合;
(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.
类型三 图形的平移变换
(2017·扬州中考)如图,将△ABC沿着射线BC方向平移至△A′B′C′,使点A′落在∠ACB的外角平分线CD上,连接AA′.
(1)判断四边形ACC′A′的形状,并说明理由;
12
(2)在△ABC中,∠B=90°,AB=24,cos∠BAC=,求CB′的长.
13
4
共分享92篇相关文档