云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 初三经典几何证明练习题(含答案)

初三经典几何证明练习题(含答案)

  • 62 次阅读
  • 3 次下载
  • 2025/6/2 7:03:22

∵∠ABC=80°,∠ABE=20°,∴∠EBC=60°,又∠BCG=60° ∴△BCG是正三角形∴BG=BC

∵∠ACB=80°,∠BCG=60°∴∠FCA=20°∴∠EBA=∠FCA 又∵∠A=∠A,AB=AC∴△ABE≌ACF∴AE=AF 1

∴∠AFE=∠AEF=(180°-∠A)=80°

2

又∵∠ABC=80°=∠AFE∴EF∥BC∴∠EFG=∠BCG=60° ∴△EFG是等边三角形∴EF=EG,∠FEG=∠EGF=∠EFG=60° ∵ACB=80°,∠DCA=30°∴∠BCD=50°

∴∠BDC=180°-∠BCD-∠ABC=180°-50°-80°=50° ∴∠BCD=∠BDC∴BC=BD前已证BG=BC∴BD=BG 1

∠BGD=∠BDG=(180°-∠ABE)=80°

2

∴∠FGD=180°-∠BGD-∠EGF=180°-80°-60°=40° 又∠DFG=180°-∠AFE-∠EFG=180°-80°-60°=40°

∴∠FGD=∠DFG∴DF=DG又EF=EG,DE=DE∴△EFD≌△EGD 11

∴∠BED=∠FED=∠FEG=×60°=30° 22

5、如图,△ABC内接于⊙O,且AB为⊙O的直径,∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,若AC=6,BC=8,求线段PD的长。

⌒=BD⌒∴AD=BD 解:∵∠ACD=∠BCD ∴AD∵AB为⊙O的直径∴∠ADB=90° ∴△ABD是等腰直角三角形

∵∠ACB=90°,AC=6,BC=8 ∴AB=10

∴AD=AB·cos∠DAB=10×

2=52 2又AE⊥CD,∠ACD=45°

∴△ACE是等腰直角三角形∴CE=AE=AC·cos∠CAE=6×

2=32 2(52)-(32)?32∴DE=42 在△ADE中,DE2=AD2-AE2∴DE2=

∴CD=CE+DE=32+42=72

13 / 17

22∵∠PDA=∠PCD,∠P=∠P ∴△PDA∽△PCD ∴

PDPAAD525???? PCPDCD727∴PC=

757535PD,PA=PD∵PC=PA+AC∴PD=PD+6解得PD= 5751证明:过点G作GH⊥AB于H,连接OE ∵EG⊥CO,EF⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E、G、O、F四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO∽△FHG ∴

EOFG=GOHG ∵GH⊥AB,CD⊥AB ∴GH∥CD ∴

GOCOHG?CD ∴

EOCOFG?CD ∵EO=CO ∴CD=GF

2证明:作正三角形ADM,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°

∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP

7414 / 17

∵MA=BA,AP=AP ∴△MAP≌△BAP ∴∠BPA=∠MPA,MP=BP 同理∠CPD=∠MPD,MP=CP ∵∠PAD=∠PDA=15° ∴PA=PD,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP≌∠CDP ∴∠BPA=∠CPD

∵∠BPA=∠MPA,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60°

∵MP=BP,MP=CP ∴BP=CP ∴△BPC是正三角形

3证明:连接AC,取AC的中点G,连接NG、MG ∵CN=DN,CG=DG ∴GN∥AD,GN=

1AD 2∴∠DEN=∠GNM ∵AM=BM,AG=CG ∴GM∥BC,GM=∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F

15 / 17

1BC 21证明:(1)延长AD交圆于F,连接BF,过点O作OG⊥AD于G ∵OG⊥AF ∴AG=FG ⌒ =AB⌒ ∵AB∴∠F=∠ACB 又AD⊥BC,BE⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF又AD⊥BC ∴DH=DF

∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH)=2GD 又AD⊥BC,OM⊥BC,OG⊥AD ∴四边形OMDG是矩形 ∴OM=GD ∴AH=2OM (2)连接OB、OC

∵∠BAC=60∴∠BOC=120° ∵OB=OC,OM⊥BC ∴∠BOM=

1∠BOC=60°∴∠OBM=30° 2∴BO=2OM

由(1)知AH=2OM∴AH=BO=AO

2证明:作点E关于AG的对称点F,连接AF、CF、QF ∵AG⊥PQ ∴∠PAG=∠QAG=90°

又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF

16 / 17

即∠PAE=∠QAF ∵E、F、C、D四点共圆 ∴∠AEF+∠FCQ=180° ∵EF⊥AG,PQ⊥AG ∴EF∥PQ ∴∠PAF=∠AFE ∵AF=AE ∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F、C、A、Q四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP 在△AEP和△AFQ中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP≌△AFQ ∴AP=AQ

/ 17

17

搜索更多关于: 初三经典几何证明练习题(含答案) 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

∵∠ABC=80°,∠ABE=20°,∴∠EBC=60°,又∠BCG=60° ∴△BCG是正三角形∴BG=BC ∵∠ACB=80°,∠BCG=60°∴∠FCA=20°∴∠EBA=∠FCA 又∵∠A=∠A,AB=AC∴△ABE≌ACF∴AE=AF 1∴∠AFE=∠AEF=(180°-∠A)=80° 2又∵∠ABC=80°=∠AFE∴EF∥BC∴∠EFG=∠BCG=60° ∴△EFG是等边三角形∴EF=EG,∠FEG=∠EGF=∠EFG=60° ∵ACB=80°,∠DCA=30°∴∠BCD=50° ∴∠BDC=180°-∠BCD-∠ABC=180°-50°-80°=50° ∴∠BCD=∠BDC∴BC=BD前已证BG=BC∴BD=BG 1∠BGD=∠BDG=(180°-∠ABE)=80° 2<

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com