当前位置:首页 > (完整word版)初一相交线与平行线所有知识点总结和常考题提高难题压轴题练习(含答案解析)
出变化规律或求出变化范围;若不变,求出这个比值.
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.
【分析】(1)根据两直线平行,同旁内角互补求出∠AOC,然后求出∠EOB=∠AOC,计算即可得解;
(2)根据两直线平行,内错角相等可得∠AOB=∠OBC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠OFC=2∠OBC,从而得解;
(3)根据三角形的内角和定理求出∠COE=∠AOB,从而得到OB、OE、OF是∠AOC的四等分线,再利用三角形的内角和定理列式计算即可得解. 【解答】解:(1)∵CB∥OA,
∴∠AOC=180°﹣∠C=180°﹣100°=80°, ∵OE平分∠COF, ∴∠COE=∠EOF, ∵∠FOB=∠AOB,
∴∠EOB=∠EOF+∠FOB=∠AOC=×80°=40°;
(2)∵CB∥OA, ∴∠AOB=∠OBC, ∵∠FOB=∠AOB, ∴∠FOB=∠OBC,
∴∠OFC=∠FOB+∠OBC=2∠OBC, ∴∠OBC:∠OFC=1:2,是定值;
(3)在△COE和△AOB中, ∵∠OEC=∠OBA,∠C=∠OAB, ∴∠COE=∠AOB,
∴OB、OE、OF是∠AOC的四等分线, ∴∠COE=∠AOC=×80°=20°,
∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,
故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°. 【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键. 40.(2017春?鄂州期末)如图1,直线MN与直线AB、CD分别交于点E、F,∠
第33页(共35页)
1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.
【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;
(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH; (3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°. 【解答】解:(1)如图1,∵∠1与∠2互补, ∴∠1+∠2=180°.
又∵∠1=∠AEF,∠2=∠CFE, ∴∠AEF+∠CFE=180°, ∴AB∥CD;
(2)如图2,由(1)知,AB∥CD, ∴∠BEF+∠EFD=180°.
又∵∠BEF与∠EFD的角平分线交于点P, ∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°, ∴∠EPF=90°,即EG⊥PF. ∵GH⊥EG, ∴PF∥GH;
(3)∠HPQ的大小不发生变化,理由如下: 如图3,∵∠1=∠2, ∴∠3=2∠2.
第34页(共35页)
又∵GH⊥EG,
∴∠4=90°﹣∠3=90°﹣2∠2. ∴∠EPK=180°﹣∠4=90°+2∠2. ∵PQ平分∠EPK,
∴∠QPK=∠EPK=45°+∠2.
∴∠HPQ=∠QPK﹣∠2=45°,
∴∠HPQ的大小不发生变化,一直是45°.
【点评】本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.
第35页(共35页)
共分享92篇相关文档