当前位置:首页 > 九年级二次函数练习题
练习五
的图象与性质
1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________. 2、二次函数 y=(x-1)2+2,当 x=____时,y 有最小值. 3、函数 y=
(x-1)2+3,当 x____时,函数值 y 随 x 的增大而增大.
4、函数y=
(x+3)2-2的图象可由函数y=x2的图象向 平移3
个单位,再向 平移2个单位得到. 5、 已知抛物线的顶点坐标为
,且抛物线过点
,则抛物线的关
系式是
6、 如图所示,抛物线顶点坐标是P(1,3),则函数y随自变量x的增大而减小的x的取值范围是( )A、x>3 B、x<3 C、x>1 D、x<1
7、已知函数
.
(1) 确定下列抛物线的开口方向、对称轴和顶点坐标;
(2) 当x= 时,抛物线有最 值,是 .
(3) 当x 时,y随x的增大而增大;当x 时,y随x的增大而减小. (4) 求出该抛物线与x轴的交点坐标及两交点间距离;
(5) 求出该抛物线与y轴的交点坐标; (6) 该函数图象可由的图象经过怎样的平移得到的?
8、已知函数
.
(1) 指出函数图象的开口方向、对称轴和顶点坐标;
(2) 若图象与x轴的交点为A、B和与y轴的交点C,求△ABC的面积; (3) 指出该函数的最值和增减性;
(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点.
(6) 画出该函数图象,并根据图象回答:当x取何值时,函数值大于0;当x取何值时,函
数值小于0.
练习六 的图象和性质 1、抛物线的对称轴是 .
2、抛物线
的开口方向是 ,顶点坐标是 .
3、试写出一个开口方向向上,对称轴为直线x=-2,且与y轴的交点坐标为(0,3)的抛物线的解析式 .
4、将 y=x2-2x+3 化成 y=a (x-h)2+k 的形式,则 y=____. 5、把二次函数
的图象向上平移3个单位,再向右平移4个单位,则两次平移
后的函数图象的关系式是 6、抛物线
与x轴交点的坐标为_________; 7、函数有最____值,最值为_______;
8、二次函数
的图象沿
轴向左平移2个单位,再沿
轴向上平移3个单位,
得到的图象的函数解析式为
,则b与c分别等于( )
A、6,4 B、-8,14 C、-6,6 D、-8,-14 9、二次函数
的图象在
轴上截得的线段长为( )
A、
B、
C、
D、
10、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1); (2)
; (3)
11、把抛物线沿坐标轴先向左平移2个单位,再向上平移3个单位,问所
得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.
12、求二次函数
的图象与x轴和y轴的交点坐标
13、已知一次函数的图象过抛物线的顶点和坐标原点求一次函数的关系式; 判
断点
是否在这个一次函数的图象上。
14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?
练习七
的性质
1、函数的图象是以
为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数
的图象经过原点,则此抛物线的顶点坐标是 3、如果抛物线
与
轴交于点
,它的对称轴是
,那么
4、抛物线
与x轴的正半轴交于点A、B两点,与y轴交
于点C,且线段AB的长为1,△ABC的面积为1,则b的值为______.
5、已知二次函数
的图象如图所示,
则a___0,b___0,
c___0,
____0;
6、二次函数
的图象如图,则直线的
图象不经过第 象限. 7、已知二次函数(
)的图象如图所示,
则下列结论:1)
同号;2)当
和
时,函数值相
同;3);4)当时,的值只能为0;其中正确的是
8、已知二次函数
与反比例函数
的图象在第二象限内的一个
交点的横坐标是-2,则m=
9、二次函数
中,若
,则它的图象必经过点( )
10、函数
与
的图象如图所示,则下列选项中正确的是( )
A、
B、
C、
D、
11、已知函数
的图象如图所示,则函数
的图象是( )
12、二次函数
的图象如图,那么abc、2a+b、a+b+c、
a-b+c这四个代数式中,值为正数的有( ) A.4个 B.3个 C.2个 D.1个 13、抛物线
的图角如图,则下列结论:
①>0;②;③>;④<1.其中正确
的结论是( ).
(A)①② (B)②③ (C)②④ (D)③④ 14、二次函数
的最大值是
,且它的图象
经过,两点,求、
、
15、试求抛物线与轴两个交点间的距离()
练习八 二次函数解析式
1、抛物线y=ax2+bx+c经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=
2、把抛物线y=x2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为 .
1、 二次函数有最小值为象的对称轴为
,当
时,
,它的图
象与x轴交于点A和B,点A在原点左边,点B在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b的图象经过点A,与这个二次函数的图象交于点C,且函数的解析式.
=10,求这个一次
,则函数的关系式为
4、根据条件求二次函数的解析式
(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点
(2)抛物线的顶点坐标为(-1,-1),且与y轴交点的纵坐标为-3 (3)抛物线过(-1,0),(3,0),(1,-5)三点;
(4)抛物线在x轴上截得的线段长为4,且顶点坐标是(3,-2);
5、已知二次函数的图象经过
6、抛物线y=ax2+bx+c过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.
7、已知二次函数的图象与x轴交于A(-2,0)、B(3,0)两点,且函数有最大值是2. (1) 求二次函数的图象的解析式;
(2) 设次二次函数的顶点为P,求△ABP的面积.
8、以x为自变量的函数
中,m为不小于零的整数,它的图
、
两点,且与
轴仅有一个交点,求二次函数的解析式
共分享92篇相关文档