µ±Ç°Î»ÖãºÊ×Ò³ > ¡¾Ð²½²½¸ß¡¿¸ß¿¼Êýѧ±±Ê¦´ó°æ(Àí)Ò»ÂÖ¸´Ï°µÚ3Õµ¼Êý¼°ÆäÓ¦Óø߿¼×¨ÌâÍ»ÆÆÒ»¸ß¿¼Öеĵ¼.doc
= (x+l)_\\[ j ¶Ô xW(¡ª 1,1)¶¼³ÉÁ¢.
ËùÒÔ y=(x+l)¡ªÊ¿
ÔÚ(Ò»1£¬1)Éϵ¥µ÷µÝÔö,
Áî ¶¡=(Ø£+1)һʿ¡¯Ôò\=1 +^+Tp>0-
1 3
ËùÒÔ ><(1 +1)-¡ª=|.¼´ dß[.
3
3 Òò´ËQµÄȡֵ·¶Î§Îª
ÌâÐͶþÀûÓõ¼ÊýÑо¿²»µÈʽÎÊÌâ
Àý 2 ÒÑÖª /(x) =xlnx, g(x) = ¡ª7+ox¡ª3.
(1) ¶ÔÒ»ÇÐxG(O, +¡ã¡ã), 2/(x)$g(x)ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
1 ?
(2) Ö¤Ã÷£º¶ÔÒ»ÇÐxW(O, +8),¶¼ÓÐ1íöÕ§Ò»¶þ³ÉÁ¢.¢Å½â ÈÎÒâxe(O, +8),ÓÐ
C C^v 3
22xlnx> ¡ªx+ax~39 Ôò aW21nx+x+¡ª,
x
3
Éè /?(x)=21nx+x+Ò»(x>0),
Ôò¼Ó(¡»+3£Ý³§), ¢Ù µ±xe(O,l)ʱ£¬X (x)<0, h(x)µ¥µ÷µÝ¼õ£¬ ¢Ú µ±Õ¨(1, +8)ʱ£¬X (x)>0, /?(¹¤)µ¥µ÷µÝÔö£¬
ËùÒÔ ¡¨(x)min = ¡¨(l) = 4. ÒòΪ¶ÔÒ»ÇÐxe(o, +oo),
2/(x)2g(x)ºã³ÉÁ¢£¬
ËùÒÔ aW¡¨(X)min = 4.
(2)Ö¤Ã÷ÎÊÌâµÈ¼ÛÓÚÖ¤Ã÷
x 2
xlnx>j¡ªgxG(O, +8)).
.Äî)=x\\nx(xÇð(0, + 8))µÄ×îСֵÊÇÒ»¡ê,
V
µ±ÇÒ½öµ±X=1ʱȡµ½.
i 2 ´Ó¶ø¶ÔÒ»ÇÐxW(O, +¡ã¡ã),¶¼ÓÐ1 nv>-?¡ª¡ª³ÉÁ¢.
C CA
˼άÉý»ª(1)ºã³ÉÁ¢ÎÊÌâ¿ÉÒÔת»¯ÎªÎÒÃǽÏΪÊìϤµÄÇó×îÖµµÄÎÊÌâ½øÐÐÇó½â£¬Èô²»ÄÜ·ÖÀë²Î Êý£¬¿ÉÒÔ½«²ÎÊý¿´³É³£ÊýÖ±½ÓÇó½â.
(2)Ö¤Ã÷²»µÈʽ£¬¿ÉÒÔת»¯ÎªÇóº¯ÊýµÄ×îÖµÎÊÌâ.
¸ú×ÙѵÁ·2¼ºÖªº¯ÊýÈ˶Ô=Æ÷+¡êÇúÏßy=f{x)ÔÚµã(1, ./(I)´¦µÄÇÐÏß·½³ÌΪx+2v-3 = 0.
(1) Çóa, bµÄÖµ£»
(2) Ö¤Ã÷£ºµ±x>0,ÇÒxHlʱ£¬./(Ø£)ØÂ
X 1
b=\\,
f (1)=_Æò
I-
ÓÉÓÚÖ±Ïßx+2y-3 = 0µÄбÂÊΪһµó ÇÒ¹ýµã(1,1), ½âµÃ a = 1, b= L
(2)Ö¤Ã÷ ÓÉ¢ÅÖª./(x)=Åà+¡ê
ËùÒÔ?²×)¡ªÑ§r
ÃóÒ»Ò»).
X ¡ª 1
¿¼ÂǺ¯ÊýÁ¦¢Å= 21nx¡ª¡¸Ò» (x>0), Ji
ËùÒÔµ± xHl ʱ£¬h W<0.¶ø¼Ó1) = 0,¹Êµ± xe(O,l)ʱ£¬/z(x)>0,¿ÉµÃTZ7^/?(x)>0£»
11 A µ±xe(l, +oo)ʱ£¬·½
(¶Ô<0,¿ÉµÃÁË^/ÐÄ)>0.
lnv
´Ó¶øµ± x>0,ÇÒ xHl ʱ£¬/(%)¡ª ---- >0.
°Ë X¡ª 1
ÌâÐÍÈý ÀûÓõ¼ÊýÑо¿º¯ÊýÁãµã»òͼÏñ½»µãÎÊÌâ
>M
Àý 3 É躯Êý/(x)=lar+¡ª, m^R. ?A
¢Åµ±\Ϊ×ÔÈ»¶ÔÊýµÄµ×Êý)ʱ£¬Çó./(X)µÄ¼«Ð¡Öµ; (2)ÌÖÂÛº¯Êýg(x) =f (x)¡ª×¨ÁãµãµÄ¸öÊý
½â¢ÅÓÉÌâÉ裬µ±tn=Qʱ£¬/(x)=lnx+^,
x¡ªe
Ôòf (x)=p,ÓÉ f (x)=0,µÃ x=c.
???µ±xe(O, e)ʱ,f (x)<0, Xx)ÔÚ(0, e)Éϵ¥µ÷µÝ¼õ£¬ µ± %e(e, +00)ʱ£¬¹ã(x)>0, ./(x)ÔÚ(e, +?)Éϵ¥µ÷µÝÔö£¬
e
???µ±x=eʱ£¬Xx)È¡µÃ¼«Ð¡Öµ/(e) = lne+-=2,
C
??J(x)µÄ¼«Ð¡ÖµÎª2.
(2)ÓÉÌâÉè g(x)=f (x)¡ª×¨=2¡ªÁîÒ»ðA0)£¬ Áî g(x)=0,µÃ¡¨Ê¬-|x3 +x(x>0).
Éè 0(x)=¡ª
Ôò 0¡¯ = -X2+1 = -(X-l)(x+1),
µ± xe(O,l)ʱ£¬Q (x)>0, 0(x)ÔÚ(0,1)Éϵ¥µ÷µÝÔö£» µ± xe(l, +oo)ʱ£¬0 (x)<0, ¡ã(x)ÔÚ(1, +8)Éϵ¥µ÷µÝ¼õ.
.??Ø£=1ÊÇ0(x)µÄΨһ¼«Öµµã£¬ÇÒÊǼ«´óÖµµã£¬Òò´Ëx=lÒ²ÊÇe(x)µÄ×î´óÖµµã.
?
(p(x)µÄ×î´óֵΪ0(1)=Ø¡
ÓÖ0(0)=0,½áºÏy=(p(x)µÄͼÏñ(Èçͼ)£¬
¿ÉÖª
2
¢Ù µ±¼Ó¡µØ¡Ê±£¬º¯Êýg(x)ÎÞÁãµã£»
¢Ú µ±¼Ó=áÜʱ£¬º¯Êýg(Ø£)ÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£» 2
¢Û µ±05<ءʱ£¬º¯Êýg(x)ÓÐÁ½¸öÁãµã£» ¢Ü µ±¼ÓW0ʱ£¬º¯Êýg(x)ÓÐÇÒÖ»ÓÐÒ»¸öÁãµã.
×ÛÉÏËùÊö£¬µ±¼Ó¡µáÜʱ£¬º¯Êýg(x)ÎÞÁãµã£»
2
µ±¼Ó=Ø¡»ò¼ÓW0ʱ£¬º¯Êýg(x)ÓÐÇÒÖ»ÓÐÒ»¸öÁãµã; 2
µ±0 ˼άÉý»ª Óõ¼ÊýÑо¿º¯ÊýµÄÁãµã£¬Ò»·½¶øÓõ¼ÊýÅжϺ¯ÊýµÄµ¥µ÷ÐÔ£¬½èÖúÁãµã´æÔÚÐÔ¶¨Àí Åжϣ»ÁíÒ»·½Ã棬Ҳ¿É½«ÁãµãÎÊÌâת»¯Îªº¯ÊýͼÏñµÄ½»µãÎÊÌ⣬ÀûÓÃÊýÐνáºÏ˼Ï뻲Ýͼȷ ¶¨²ÎÊý·¶Î§. ¸ú×ÙѵÁ·3ÒÑÖªº¯Êýf{x) = 21iir¡ªx2+ax(a E R). (1) µ±a=2ʱ£¬Çó/(x)µÄͼÏñÔÚx=l´¦µÄÇÐÏß·½³Ì£» ¢ÆÈôº¯Êýg(x)=fix)~ax+mÔÚÍö£¬e£ÝÉÏÓÐÁ½¸öÁãµã£¬ÇóʵÊý¼ÓµÄȡֵ·¶Î§. 9 ½â(1)µ± a=2 ʱ£¬Xx)=21nx-?+2x,/ (x)=--2x+2,Çеã×ø±êΪ(1,1),ÇÐÏßµÄбÂÊ k=f (1) =2,ÔòÇÐÏß·½³ÌΪ y~\\=2(x~l),¼´ 2x¡ªy¡ª1=0. (2) g(x)=21nx¡ªx + m, 2 Ôò g' (x)=~-2x= TXW[2£¬e], ???µ± g¡®(x)=0 ʱ£¬x=l. µ±2<¹¤<1 ʱ£¬g' (x)>0£» µ± l Ò» 2(x+l)(Ø£Ò» 1) x g(C)= 77? + 2 ¡ªC2, ¹Êg(x)ÔÚX=1´¦È¡µÃ¼«´óÖµg(l)=¡¨?Ò» 1. m 2+^<0, g(c)-g(|)=4-c ¡ª2¡ª\ Ôò g(c)vg(¡ê)£¬ ??±¶¢ÅÔÚÍö£¬c£ÝÉϵÄ×îСֵÊÇg(e). g(x)ÔÚ£Û¡ê, e£ÝÉÏÓÐÁ½¸öÁãµãµÄÌõ¼þÊÇ g(l) = ¡¨ ½âµÃ1SW2+Õ¼, c 2¡ª1>0, =¡¨2_2_-IWO, e ???ʵÊý¼ÓµÄȡֵ·¶Î§ÊÇ(1,2+¿¸ V/ Á·³ö¸ß·Ö (ʱ¼ä£º70·ÖÖÓ)
¹²·ÖÏí92ƪÏà¹ØÎĵµ