µ±Ç°Î»ÖãºÊ×Ò³ > CÓïÑÔ³ÌÐòÉè¼ÆÊÔÌâ¼°´ð°¸½âÎö
CÓïÑÔ³ÌÐòÉè¼ÆÊÔÌâ
µÚ1¡¢2¡¢3Õ ¸ÅÊö¡¢ÀàÐÍ¡¢±í´ïʽ Ò»¡¢Ñ¡ÔñÌâ
Ò»¸öC³ÌÐòÓÉÈô¸É¸öCº¯Êý×é³É£¬¸÷¸öº¯ÊýÔÚÎļþÖеÄλÖÃ˳ÐòΪ£º£¨ £© A¡¢ ÈÎÒâ B¡¢ µÚÒ»¸öº¯Êý±ØÐëÊÇÖ÷º¯Êý£¬ÆäËûº¯ÊýÈÎÒâ C¡¢ ±ØÐëÍêÈ«°´ÕÕÖ´ÐеÄ˳ÐòÅÅÁÐ
D¡¢ ÆäËûº¯Êý¿ÉÒÔÈÎÒ⣬,Ö÷º¯Êý±ØÐëÔÚ×îºó ´ð°¸£ºA
ÏÂÁÐËĸöÐðÊöÖУ¬ÕýÈ·µÄÊÇ£º£¨ £© A¡¢ C³ÌÐòÖеÄËùÓÐ×Öĸ¶¼±ØÐëСд
B¡¢ C³ÌÐòÖеĹؼü×Ö±ØÐëСд£¬ÆäËû±ê ʾ·û²»Çø·Ö´óСд C¡¢ C³ÌÐòÖеÄËùÓÐ×Öĸ¶¼²»Çø·Ö´óСд D¡¢ CÓïÑÔÖеÄËùÓйؼü×Ö±ØÐëСд ´ð°¸£ºD
ÏÂÁÐËĸöÐðÊöÖУ¬´íÎóµÄÊÇ£º£¨ £©
A¡¢ Ò»¸öCÔ´³ÌÐò±ØÐëÓÐÇÒÖ»ÄÜÓÐÒ»¸öÖ÷º¯Êý B¡¢ Ò»¸öCÔ´³ÌÐò¿ÉÒÔÓжà¸öº¯Êý
C¡¢ ÔÚCÔ´³ÌÐòÖÐ×¢ÊÍ˵Ã÷±ØÐëλÓÚÓï¾äÖ®ºó D¡¢ CÔ´³ÌÐòµÄ»ù±¾½á¹¹ÊǺ¯Êý ´ð°¸£ºC
ÏÂÃæ²»ÊÇCÓïÑԺϷ¨±êʶ·ûµÄÊÇ£º£¨ £©
A¡¢abc B¡¢5n C¡¢_4m D¡¢x3 ´ð°¸£ºB
ÒÔÏÂÐðÊö²»ÕýÈ·µÄÊÇ£º£¨ £©
A. ·ÖºÅÊÇCÓï¾äµÄ±ØÒª×é³É²¿·Ö B. C³ÌÐòµÄ×¢ÊÍ¿ÉÒÔдÔÚÓï¾äµÄºóÃæ C. º¯ÊýÊÇC³ÌÐòµÄ»ù±¾µ¥Î» D. Ö÷º¯ÊýµÄÃû×Ö²»Ò»¶¨·ÇÓÃmainÀ´±íʾ ´ð°¸£ºD
CÓïÑÔÖÐÔÊÐíµÄ»ù±¾Êý¾ÝÀàÐͰüÀ¨£º£¨ £©
A. ÕûÐÍ¡¢ÊµÐÍ¡¢Âß¼ÐÍ B. ÕûÐÍ¡¢ÊµÐÍ¡¢×Ö·ûÐÍ
C. ÕûÐÍ¡¢×Ö·ûÐÍ¡¢Âß¼ÐÍ D. ÕûÐÍ¡¢ÊµÐÍ¡¢Âß¼ÐÍ¡¢×Ö·ûÐÍ ´ð°¸£ºB
CÓïÑÔÖÐÄÜÓð˽øÖƱíʾµÄÊý¾ÝÀàÐÍΪ£º£¨ £©
A¡¢×Ö·ûÐÍ¡¢ÕûÐÍ B¡¢ÕûÐΡ¢ÊµÐÍ
C¡¢×Ö·ûÐÍ¡¢ÊµÐÍ¡¢Ë«¾«¶ÈÐÍ D¡¢×Ö·ûÐÍ¡¢ÕûÐÍ¡¢ÊµÐÍ¡¢Ë«¾«¶ÈÐÍ ´ð°¸£ºA
ÏÂÁÐÊôÓÚCÓïÑԺϷ¨µÄ×Ö·û³£ÊýÊÇ£º£¨ £© A¡¢¡¯\\97¡¯ B¡¢¡±A¡± C¡¢¡¯\\t¡¯ D¡¢¡±\\0¡± ´ð°¸£ºC
ÔÚCÓïÑÔ£¨VC»·¾³£©ÖУ¬5ÖÖ»ù±¾Êý¾ÝÀàÐ͵Ĵ洢¿Õ¼ä³¤¶ÈµÄÅÅÁÐ˳ÐòΪ£º£¨ £© A¡¢char 1 D¡¢char=int= ÔÚCÓïÑÔÖУ¨VC»·¾³£©£¬Ò»¶¨Êdz¤ÕûÐͳ£ÊýµÄÊÇ£º£¨ £© A¡¢0L B¡¢4962710 C¡¢0412765 D¡¢0xa34b7fe ´ð°¸£ºA ÈôÓÐÒÔ϶¨ÒåÓï¾ächar c1=¡¯b¡¯, c2=¡¯e¡¯; printf(¡°%d,%c\\n¡±,c2-c1,c2-¡®a¡¯+¡¯A¡¯);ÔòÊä³ö½á¹ûÊÇ£º£¨ £© A¡¢2£¬M B¡¢3£¬E C¡¢2£¬E D¡¢Êä³öÏîÓëÏàÓ¦µÄ¸ñʽ¿ØÖƲ»Ò»Ö£¬Êä³ö½á¹û²»È·¶¨ ´ð°¸£ºB ÒÔϺϷ¨µÄ¸³ÖµÓï¾äÊÇ£º£¨ £© A¡¢x=y=100 B¡¢d--; C¡¢x + y D¡¢c = int(a+b); ´ð°¸£ºB Éè±äÁ¿tΪintÐÍ£¬ÏÂÁÐÑ¡ÏîÖв»ÕýÈ·µÄ¸³ÖµÓï¾äÊÇ£º£¨ £© A¡¢++t£» B¡¢n1=(n2=(n3=0)); C¡¢k=i==m; D¡¢a=b+c=1; ´ð°¸£ºD ÔÚÒÔÏÂÒ»×éÔËËã·ûÖУ¬ÓÅÏȼ¶×î¸ßµÄÊÇ£º£¨ £© A¡¢<= B¡¢== C¡¢% D¡¢&& ´ð°¸£ºC ÏÂÁÐÄÜÕýÈ·±íʾa¡Ý10»òa¡Ü0µÄ¹ØÏµ±í´ïʽÊÇ£º£¨ £© A¡¢a>=10 or a<=0 B¡¢a<=10 || a>=0 C¡¢a>=10 || a<=0 D¡¢a>=10 && a<=0 ´ð°¸£ºC ÏÂÁÐÖ»Óе±ÕûÊýxÎªÆæÊýʱ£¬ÆäֵΪ¡°Õ桱µÄ±í´ïʽÊÇ£º£¨ £© A¡¢x%2==0 B¡¢!(x%2==0) C¡¢(x-x/2*2)==0 D¡¢!(x%2) ´ð°¸£ºB ÉèaΪÕûÐͱäÁ¿£¬²»ÄÜÕýÈ·±í´ïÊýѧ¹ØÏµ10=15) C¡¢a>10 && a<15 D¡¢!(a<=10) && !(a>=15) ´ð°¸£ºA ÒÑÖªx=43, ch=¡¯A¡¯£¬y=0£»Ôò±í´ïʽ£¨x>=y&&ch<¡¯B¡¯&&!y£©µÄÖµÊÇ£º£¨ £© A¡¢0 B¡¢Óï·¨´í C¡¢1 D¡¢¡°¼Ù¡± ´ð°¸£ºC ±í´ïʽ17%4 /8µÄֵΪ£º£¨ £© A¡¢0 B¡¢1 C¡¢2 D¡¢3 ´ð°¸£ºA Óï¾äprintf(¡°%d¡±,(a=2)&&(b= -2));µÄÊä³ö½á¹ûÊÇ£º£¨ £© A¡¢ÎÞÊä³ö B¡¢½á¹û²»È·¶¨ C¡¢-1 D¡¢1 ´ð°¸£ºD Ò»¸ö¿ÉÖ´ÐеÄC³ÌÐòµÄ¿ªÊ¼Ö´ÐеãÊÇ£º£¨ £© A. ³ÌÐòÖеĵÚÒ»¸öÓï¾ä B. °üº¬ÎļþÖеĵÚÒ»¸öº¯Êý C. ÃûΪmainµÄº¯Êý D. ³ÌÐòÖеĵÚÒ»¸öº¯Êý ´ð°¸£ºC 2 ×é³É£ÃÓï¾äµÄÒ»¸ö±Ø²»¿ÉÉٵķûºÅÊÇ£º£¨ £© A. ¶ººÅ B. ÒýºÅ C. ðºÅ D. ·ÖºÅ ´ð°¸£ºD Èô½«int¡¢long¡¢floatµÈÀàÐ͵ÄÊý¾Ý½øÐлìºÏÔËË㣬Æä½á¹ûµÄÊý¾ÝÀàÐÍÊÇ£º£¨ £© A. int B. long C. float D. double ´ð°¸£ºD ÏÂÊöÊÇCÓïÑÔÖÐÓйرäÁ¿¶¨ÒåµÄ¼¸¸ö˵·¨£¬ÕýÈ·µÄÊÇ£º£¨ £© A. ±äÁ¿¿ÉÒÔ²»¶¨ÒåÖ±½ÓʹÓà B. Ò»¸ö˵Ã÷Óï¾äÖ»Äܶ¨ÒåÒ»¸ö±äÁ¿ C. ¼¸¸ö²»Í¬ÀàÐ͵ıäÁ¿¿ÉÔÚͬһÓï¾äÖж¨Òå D. ±äÁ¿¿ÉÒÔÔÚ¶¨Òåʱ½øÐгõ窻¯ ´ð°¸£ºD Óëx * = y + zµÈ¼ÛµÄ¸³Öµ±í´ïʽÊÇ£º£¨ £© A. x = y + z B. x = x * y + z C. x = x * (y + z) D. x = x + y * z ´ð°¸£ºC µ±´úµç×Ó¼ÆËã»úÄܹ»×Ô¶¯µØ´¦ÀíÖ¸¶¨µÄÎÊÌâÊÇÒòΪ£º£¨ £© A£®¼ÆËã»úÊǵ綯µÄ B£®Óнâ¾ö¸ÃÎÊÌâµÄ¼ÆËã»ú³ÌÐò C£®ÊÂÏÈ´æ´¢Á˽â¾ö¸ÃÎÊÌâµÄ³ÌÐò D£®ÒÔÉ϶¼²»ÊÇ ( ֪ʶµã£º³ÌÐòµÄ»ù±¾¸ÅÄ ÄѶÈϵÊý£º2£» ´ð°¸£ºC ) ÒÔÏÂÐðÊöÖÐ×î׼ȷµÄÊÇ£º£¨ £© A£®¼ÆËã»ú³ÌÐòÊÇ´¦ÀíijһÎÊÌâËùÓÐÖ¸ÁîµÄ¼¯ºÏ B£®¼ÆËã»ú³ÌÐòÊÇ´¦ÀíijһÎÊÌâËùÓõ½µÄËùÓÐÊý¾ÝµÄ¼¯ºÏ C£®¼ÆËã»ú³ÌÐòÊÇ´¦ÀíijһÎÊÌâµÄËùÓÐÖ¸Áî¼°ÆäÊý¾ÝµÄ¼¯ºÏ D£®¼ÆËã»ú³ÌÐòÊÇ´¦ÀíijһÎÊÌâµÄËùÓÐÖ¸Áî¼°ÆäÊý¾ÝµÄÓÐÐò¼¯ºÏ ( ֪ʶµã£º³ÌÐòµÄ»ù±¾¸ÅÄ ÄѶÈϵÊý£º2£» ´ð°¸£ºD ) ¹ØÓÚ¼ÆËã»ú³ÌÐòÉè¼Æ£¬ÒÔÏÂÃèÊö×î׼ȷµÄÊÇ£º£¨ £© A£®³ÌÐòÉè¼Æ¾ÍÊÇÓÃÓïÑÔÀ´±àд³ÌÐò B£®³ÌÐòÉè¼Æ¾ÍÊÇÓüÆËã»úÓïÑÔÀ´±àд³ÌÐò C£®³ÌÐòÉè¼Æ¾ÍÊÇÓüÆËã»ú³ÌÐòÉè¼ÆÓïÑÔÀ´±àд³ÌÐò D£®³ÌÐòÉè¼Æ¾ÍÊÇÓüÆËã»úÄÜʶ±ðµÄÓïÑÔÀ´±àд³ÌÐò ( ֪ʶµã£º³ÌÐòÉè¼ÆµÄ»ù±¾¸ÅÄ ÄѶÈϵÊý£º1£» ´ð°¸£ºC ) Ŀǰ±àд¼ÆËã»ú³ÌÐòÒ»°ã²ÉÓõÄÊÇ£º£¨ £© A£®»úÆ÷ÓïÑÔ B£®»ã±àÓïÑÔ C£®¸ß¼¶ÓïÑÔ D£®Ó¢Óï ( ֪ʶµã£º³ÌÐòÉè¼ÆµÄ»ù±¾¸ÅÄ ÄѶÈϵÊý£º1£» ´ð°¸£ºC ) Éè¼ÆÒ»¸ö¼ÆËã»ú³ÌÐò×î»ù±¾µÄ¹¤×÷ÊÇ£º£¨ £© A£®Öƶ¨ÕýÈ·µÄËã·¨ B£®Ñ¡ÔñºÏÀíµÄÊý¾Ý½á¹¹ C£®Öƶ¨ÕýÈ·µÄËã·¨ºÍÑ¡ÔñºÏÀíµÄÊý¾Ý½á¹¹ D£®ÒÔÉ϶¼²»ÊÇ ( ֪ʶµã£ºËã·¨µÄ»ù±¾¸ÅÄ ÄѶÈϵÊý£º1£» ´ð°¸£ºC ) Ëã·¨¾ßÓÐÎå¸öÌØÐÔ,ÒÔÏÂÑ¡ÏîÖв»ÊôÓÚËã·¨ÌØÐÔµÄÊÇ£º£¨ £© A£®ÓÐÇîÐÔ B£®¼ò½àÐÔ C£®¿ÉÐÐÐÔ D£®È·¶¨ÐÔ ( ֪ʶµã£ºËã·¨µÄ»ù±¾¸ÅÄ ÄѶÈϵÊý£º3£» ´ð°¸£ºB ) 3 ÏÂÊöÄÄÒ»¸ö²»Êǽṹ»¯³ÌÐò»ù±¾½á¹¹£º£¨ £© A£®Ë³Ðò B£®Ñ¡Ôñ C£®Ñ»· D£®Ç¶Ì× ( ֪ʶµã£º½á¹¹»¯³ÌÐòÉè¼ÆµÄ¸ÅÄ ÄѶÈϵÊý£º2£» ´ð°¸£ºD ) CÓïÑÔÊÇÒ»ÖÖ£º£¨ £© A£®»úÆ÷ÓïÑÔ B£®»ã±àÓïÑÔ C£®¸ß¼¶ÓïÑÔ D£®ÒÔÉ϶¼²»ÊÇ ( ֪ʶµã£ºCÓïÑÔµÄÌØµã£» ÄѶÈϵÊý£º1£» ´ð°¸£ºC ) CÓïÑÔÔ´³ÌÐòµÄÀ©Õ¹ÃûΪ£º£¨ £© A£®.exe B£®.c C£®.obj D£®.cpp ( ֪ʶµã£ºCÓïÑÔµÄÌØµã£» ÄѶÈϵÊý£º1£» ´ð°¸£ºB ) C³ÌÐò±àÒëºó×îÖÕ²úÉú(¼´¼ÆËã»úÖ´ÐÐ)µÄÎļþµÄÀ©Õ¹ÃûΪ( ) A£®.exe B£®.c C£®.obj D£®.cpp ( ֪ʶµã£ºCÓïÑÔµÄÌØµã£» ÄѶÈϵÊý£º1£» ´ð°¸£ºA ) ÏÂÁи÷ÏîÖУ¬²»ÊÇCÓïÑÔµÄÌØµãÊÇ£º£¨ £© A£®ÓïÑÔ¼ò½à¡¢½ô´Õ£¬Ê¹Ó÷½±ã B£®³ÌÐòÖ´ÐÐЧÂʸߣ¬¿ÉÒÆÖ²ÐԺà C£®ÄÜʵÏÖ»ã±àÓïÑԵĴó¶àÊý¹¦ÄÜ D£®ÓнÏÇ¿µÄÍøÂç²Ù×÷¹¦ÄÜ ( ֪ʶµã£ºCÓïÑÔµÄÌØµã£» ÄѶÈϵÊý£º3£» ´ð°¸£ºD ) ¹¹³ÉCÓïÑÔÔ´³ÌÐòµÄ»ù±¾µ¥Î»ÊÇ£º£¨ £© A£®×Ó³ÌÐò B£®¹ý³Ì C£®Îı¾ D£®º¯Êý ( ֪ʶµã£ºC³ÌÐòµÄÌØµã£» ÄѶÈϵÊý£º1£» ´ð°¸£ºD ) ÏÂÁÐÐðÊöÕýÈ·µÄÊÇ£º£¨ £© A£®CÓïÑÔÔ´³ÌÐò¿ÉÒÔÖ±½ÓÔÚDOS»·¾³ÖÐÔËÐÐ B£®±àÒëCÓïÑÔÔ´³ÌÐòµÃµ½µÄÄ¿±êÎļþ¿ÉÒÔÖ±½ÓÔÚDOS»·¾³ÖÐÔËÐÐ C£®CÓïÑÔÔ´³ÌÐò¾¹ý±àÒë¡¢Á¬½ÓµÃµ½µÄ¿ÉÖ´ÐгÌÐò¿ÉÒÔÖ±½ÓÔÚDOS»·¾³ÖÐÔËÐÐ D£®CÓïÑÔÔ´³ÌÐò¿ÉÒÔÖ±½ÓÔÚVC++»·¾³ÖÐÔËÐÐ ( ֪ʶµã£ºC³ÌÐòµÄÌØµã£» ÄѶÈϵÊý£º2£» ´ð°¸£ºC ) ijC³ÌÐòÓÉÒ»¸öÖ÷º¯Êýmain()ºÍÒ»¸ö×Ô¶¨Ò庯Êýmax()×é³É£¬Ôò¸Ã³ÌÐò£º£¨ £© A£®Ð´ÔÚÇ°ÃæµÄº¯ÊýÏÈ¿ªÊ¼Ö´ÐÐ B£®×ÜÊÇ´Ómain()º¯Êý¿ªÊ¼Ö´ÐÐ C£®×ÜÊÇ´Ómax()º¯Êý¿ªÊ¼Ö´ÐÐ D£®Ð´ÔÚºóÃæµÄº¯ÊýÏÈ¿ªÊ¼Ö´ÐÐ ( ֪ʶµã£ºC³ÌÐòµÄÌØµã£» ÄѶÈϵÊý£º1£» ´ð°¸£ºB ) ÒÔÏÂÐðÊö²»ÕýÈ·µÄÊÇ£º£¨ £© A£®·ÖºÅÊÇCÓï¾äµÄ±ØÒª×é³É²¿·Ö B£®C³ÌÐòµÄ×¢ÊÍ¿ÉÒÔдÔÚÓï¾äµÄºóÃæ C£®º¯ÊýÊÇC³ÌÐòµÄ»ù±¾µ¥Î» D£®Ö÷º¯ÊýµÄÃû×Ö²»Ò»¶¨ÓÃmian±íʾ ( ֪ʶµã£ºC³ÌÐòµÄÌØµã£» ÄѶÈϵÊý£º1£» ´ð°¸£ºD ) ÒÔÏÂΪCÓï¾äµÄÊÇ£º£¨ £© A£®a=8 B£®a++£» C£®if(a>8) D£® #include A£®a=8£» B£®a++£» C£®if(a>8)£» D£®for(i=1£»i<5£»i++) 4
¹²·ÖÏí92ƪÏà¹ØÎĵµ