当前位置:首页 > 环氧树脂增韧途径与机理
击时断裂形变提高,从而使其韧性增加。 2、IPN增韧机理
互穿网络聚合物是由2种或2种以上交联网状聚合物相互贯穿,缠结形成的聚合物混合物,其特点足1种材料无规则地贯穿到另1种材料中去,起着“强迫包容”和“协同效应”的作用。中国环氧树脂行业协会专家表示,影响IPN性能的主要因素有网络的互穿程度、组分比、交联程度,全互穿IPN明显高于半互穿IPN的性能[1]。IPN的橡胶相组分过大,拉伸强度、剪切强度、弯曲强度都急剧降低,增韧效果也差。适当的交联都可获得最佳力学性能,不但韧性大幅度提高,而且拉伸强度也有所提高。但交联含量过高,对提高固化物韧性不利,因为网络链太短,不利于外力作用下的应变,吸收冲击能减小。
液晶聚合物(LCP)含有大量的刚性介晶单元和一定量的柔性间隔段,其结构特点决定了它的优异性能,它比一般聚合物具有更高的物理力学性能和耐热性。据中国环氧树脂行业协会专家介绍,它的拉伸强度可达200MPa以上,比ET、PC高3倍,比PE高6倍;其模量达20GPa以上,比PE高20倍,比PC、PEK高8.5倍。
四、热致性液晶聚合物增韧环氧树脂 1、热致性液晶聚合物增韧改性方法
LCP还有另1个重要特点,它在加工过程中受到剪切力作用具有形成纤维状结构的特性,因而能产生高度自增强作用。中国环氧树脂行业协会专家说,因此当用热致性液晶聚合物(TLCP)和环氧树脂进行共混改性时,在提高韧性的同时,弯曲模量保持不变Tg还略有升高,同化物为两相结构。LCP以原纤形式分散于环氧基体中,在应力作用下提高了材料的韧性。LCP和热塑性工程塑料相比,用量仅为其25~30%,却可达到同样的增韧效果。
梁伟荣等采用热致性液晶聚合物KU9221增韧E-51,E-51树脂中加入2%~4%的KU9221时,其固化物冲击强度提高2倍左右,并可使弹性模量和耐热性提高。姚康德等发现,环氧树脂中含有少量LCP,如聚(对羟基苯甲酸酯一共一对苯二甲酸乙二醇酯)作为分散相,可大幅度改善固化物Tg附近的伸长率。此时LCP在固化物中呈微相分散,类似于分子复合材料的增强效应。
韦春等合成了1种端基含有活性基团的热致性液晶聚合物(LCPU),用其改性环氧树脂CYD-128/4,4’-二氨基二苯砜固化体系。结果表明,LCPU的加入可以使固化体系的冲击强度提高2~3.5倍,拉伸强度提高1.6~1.8倍,弹性模量提高1.1~1.5倍,断裂伸长率提高2~2.6倍,玻璃化转变温度提高36~60℃,改性后材料断裂面的形态逐渐呈现韧性断裂特征。张宏元等设计并合成了1种侧链型液晶聚合物(SLCP),用T31作同化剂时SLCP对环氧树脂有较好的增韧效果。在强度和玻璃化温度不降低的情况下,断裂伸长率比未改性固化物最大提高2.6倍。
利用液晶环氧树脂对普通环氧树脂进行改性电是实现环氧树脂高性能化的1个可行途径,具有重要的应用价值。据中国环氧树脂行线专家介绍,李孝波等先以苯酚和环氧氯丙烷为主要原料制得液晶单官能团环氧树脂(MEP),在120℃下使之与E-44环氧树脂、二苯砜二胺反应制得侧链液晶环氧树脂(SCEP),在150℃/4h+200℃/8h下即可制得其固化物。MEP、SCEP及其固化物均有较好的液晶特征,SCEP有较高的强度和韧性。
2、热致性液晶聚合物增韧机理
热致性液晶聚合物增韧环氧树脂的机理主要是裂纹钉锚作用机制。如前所述,TLCP作为第二相(刚性与基体接近),本身又有一定的韧性和较高的断裂伸长率,第二相体积分数适当,就可以发生裂纹钉锚增韧作用,即TLCP颗粒对裂纹扩展具有约束闭合作用,它横架在断裂面上,从而阻止裂纹进一步扩展,像一座桥将裂纹的两边联接起来,同时桥联力还使两者连接处的裂纹起钉锚作用。中国环氧树脂行业协会专家表示,少量TLCP原纤存在可以阻止裂缝,提高脆性基体的韧性,而不降低材料的耐热性和刚度。
采用原位聚合技术使初生态刚性高分子均匀分散于刚性树脂基体中,得到准分子水平上的复合增韧特性是探索改性脆性高聚物,得到高强度和高韧性聚合物的新途径——中国环氧树脂行业协会专家对专门介绍。
五、刚性高分子增韧环氧树脂
张影等研究了原位聚合聚对苯甲酰胺(PNM)对环氧树脂和粒子填充环氧树脂的改性作用,加入5%左右的PNM,环氧树脂拉伸强度从纯环氧树脂的50.91MPa和粒子填充(30%)环氧树脂的69.21MPa,分别提高到94.25MPa和91.85MPa;断裂韧性从纯环氧树脂的0.83J/m2和粒子填充环氧树脂的0.72J/m2,分别提高到1.86J/m2和1.98J/m2,而其他性能也有不同程度的改善。关于液晶聚合物原位聚合改性环氧树脂的研究也有报道。
原位增韧是通过两阶段反应,使在交联后形成分子质量呈双峰分布的热固性树脂交联网络,这种方法制得树脂韧性可以是常规捌脂韧性的2~10倍。据中国环氧树脂行业协会专家介绍,其增韧机理可能是由于形成的固化物交联网的不均一性,从而形成了微观上的非均匀连续结构来实现的[17]这种结构从力学匕讲有利于材料产生塑性变形,所以具有较好的韧性。
核壳结构聚合物(Core-Shell Latex Polymer,CSLP)是指由2种或2种以上单体通过乳液聚合而获得一类聚合物复合粒子。粒子的内部和外部分别富集不同成分,显示出特殊的双层或者多层结构,核与壳分别具有不同功能,通过控制粒子尺寸及CSLP组成改性环氧树脂,可以获得显著增韧效果。与传统橡胶增韧方法相比,不容性的CSLP与环氧树脂共混,在取得好的效果同时Tg基本保持不变,而利用相容性的CSLP则可获得更好的结果。中国环氧树脂行业协会专家特别介绍,用核壳聚合物改性环氧树脂粘合剂能减少内应力,提高粘结强度和冲击性。
六、核壳结构聚合物增韧环氧树脂
张明耀等研究PnBA/PMMA核壳结构增韧剂对环氧树脂的力学性能的影响,冲击实验结果表明,加入30份增韧剂后,环氧树脂的冲击强度有显著提高,断裂方式由脆性断裂转为韧性断裂。对于酸酐固化体系,冲击强度提高约32倍,超过ABS等工程塑料,对于Moca固化体系,冲击强度提高近7倍。中村吉仲等对比了就地聚合PBA-P(BA-IG)0.2~1um的橡胶粒子分散体以及用晶种乳液聚合制成的PBA/PMMA,P(BA-IG)/P(MMA-IG)橡胶粒子分散体分别在环氧树脂体系中的内应力减低效果。发现前者固化产物Tg下降了,而后者Tg完全没有影响。
SEM观察前者形成了IPN结构,而后者仅仪是粒子界面附近形成IPN,同时后者制成的粘合剂的性能有了明显的提高。就地聚合获得的第1代丙烯酸橡胶粒子其核壳结构基本上是均一的,它们作为结构胶,其剥离强度、冲击性能还不很好。晶种核壳聚丙烯酸橡胶粒子是第2代产品,其薄壳部分具有絮凝性,核部分担负着增强韧性作用。据中国环氧树脂行业协会专家介绍,科研人员在研究中发现,后者环氧树脂固化后核部分的丙烯酸橡胶粒子呈微分散型,因此抗冲击性、剥离强度较高。
增韧是将环氧树脂固化物均相体系变成1个多相体系。中国环氧树脂行业协会专家介绍说, “海岛结构”就属于这种体系,即增韧剂聚集成球形颗粒在环氧树脂交联网络构成的连续相中成为分散相,分散相颗粒直径通常在几微米以下。“海岛结构”一经形成,材料抗开裂性能就会发生突变,即材料的断裂韧性大幅度提高,而材料所固有的力学性能、耐热性能损失较小。
七、环氧树脂增韧的其他途径
以往对增韧机理的研究比较侧重于橡胶颗粒或具有优异性能的塑料对增韧的作用,而忽视了环氧树脂基体结构的影响。实际上环氧树脂固化物平均网链艮度对橡胶增韧作用有重要影响,据中国环氧树脂行业协会专家介绍,当“海岛结构”中分散相颗粒是模量较低的弹性体时,其主要作用是诱发环氧树脂基体发生屈服和塑性变形,从而大幅度提高断裂韧性。没有“海岛结构”的存在,就无法发挥环氧树脂基体形变耗能的潜力。当然橡胶颗粒自己发生形变、撕裂对韧性有贡献,但只有在树脂交联密度很高不易发生形变时才占主导地位。
孙以实等人曾对CTBN在环氧树脂固化物中“海岛结构”形成与否对增韧的影响进行了实验,结果发现凡足能形成“海岛结构”,断裂韧性就成倍增加,热变温度下降较小;如不能形成“海岛结构”,即使是CTBN对该系统而言,也仅能起到增柔作用,不能称其为增韧剂。基于以上认识,国内开发出适合于环氧树脂/酸酐体系的“海岛型”环氧树脂增韧剂,并建成了年产百吨试产车间。它是一种带有不同活性端基通过酯键或胺酯键将不同种类的链段联结起来的聚合物的混合物,其改性环氧树脂/酸酐体系的根本原因在于树脂固化前它能与之相溶,固化过程中它又能与之分离形成颗粒适宜的“海岛结构”之故。
共分享92篇相关文档