当前位置:首页 > 2019年江苏省南京市中考数学试卷-精选
择两天参加活动.
(1)甲同学随机选择两天,其中有一天是星期二的概率是多少? (2)乙同学随机选择连续的两天,其中有一天是星期二的概率是
.
【分析】(1)由树状图得出共有12个等可能的结果,其中有一天是星期二的结果有6个,由概率公式即可得出结果;
(2)乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,由概率公式即可得出结果.
【解答】解:(1)画树状图如图所示:共有12个等可能的结果,其中有一天是星期二的结果有6个,
∴甲同学随机选择两天,其中有一天是星期二的概率为
=;
(2)乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);
其中有一天是星期二的结果有2个,即(星期一,星期二),(星期二,星期三), ∴乙同学随机选择连续的两天,其中有一天是星期二的概率是; 故答案为:.
【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.
22.(7分)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:PA=PC.
【分析】连接AC,由圆心角、弧、弦的关系得出
=
,进而得出
=
,根据等弧所
对的圆周角相等得出∠C=∠A,根据等角对等边证得结论. 【解答】证明:连接AC, ∵AB=CD, ∴∴
=+
, =
+
,即
=
,
∴∠C=∠A, ∴PA=PC.
【点评】本题考查了圆心角、弧、弦的关系,圆周角定理,等腰三角形的判定等,熟练掌握性质定理是解题的关键.
23.(8分)已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3. (1)当k=﹣2时,若y1>y2,求x的取值范围.
(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围. 【分析】(1)解不等式﹣2x+2>x﹣3即可;
(2)先计算出x=1对应的y2的函数值,然后根据x<1时,一次函数y1=kx+2(k为常数,
k≠0)的图象在直线y2=x﹣3的上方确定k的范围.
【解答】解:(1)k=﹣2时,y1=﹣2x+2, 根据题意得﹣2x+2>x﹣3, 解得x<;
(2)当x=1时,y=x﹣3=﹣2,把(1,﹣2)代入y1=kx+2得k+2=﹣2,解得k=﹣4, 当﹣4≤k<0时,y1>y2; 当0<k≤1时,y1>y2.
【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直
线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
24.(8分)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道
EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D处测得A的仰角为45°.求隧道EF的长度. (参考数据:tan22°≈0.40,tan27°≈0.51.)
【分析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出
CH,计算即可.
【解答】解:延长AB交CD于H, 则AH⊥CD,
在Rt△AHD中,∠D=45°, ∴AH=DH,
在Rt△AHC中,tan∠ACH=
,
∴AH=CH?tan∠ACH≈0.51CH, 在Rt△BHC中,tan∠BCH=∴BH=CH?tan∠BCH≈0.4CH, 由题意得,0.51CH﹣0.4CH=33, 解得,CH=300,
∴EH=CH﹣CE=220,BH=120, ∴AH=AB+BH=153, ∴DH=AH=153, ∴HF=DH﹣DF=103, ∴EF=EH+FH=323, 答:隧道EF的长度为323m.
,
【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
25.(8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?
【分析】设扩充后广场的长为3xm,宽为2xm,根据矩形的面积公式和总价=单价×数量列出方程并解答.
【解答】解:设扩充后广场的长为3xm,宽为2xm, 依题意得:3x?2x?100+30(3x?2x﹣50×40)=642000 解得x1=30,x2=﹣30(舍去). 所以3x=90,2x=60,
答:扩充后广场的长为90m,宽为60m.
【点评】题考查了列二元一次方程解实际问题的运用,总价=单价×数量的运用,解答时找准题目中的数量关系是关键.
26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点
D在边AC上,点E、F在边AB上,点G在边BC上.
小明的作法
1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G. 2.以点D为圆心,DG长为半径画弧,交AB于点E.
3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形. (1)证明小明所作的四边形DEFG是菱形.
(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续
共分享92篇相关文档