当前位置:首页 > 2020届中考复习广东省广州市天河区中考数学一模试题((有配套答案))
..
数的图象上.
(1)m的取值范围是 ,函数图象的另一支位于第一象限,若x1>x2,y1>y2,则点B在第 象限;
(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点C与点A关于x轴对称,若△OAC的面积为6,求m的值.
24.(14分)如图:AD是正△ABC的高,O是AD上一点,⊙O经过点D,分别交AB、AC于E、F (1)求∠EDF的度数; (2)若AD=6
,求△AEF的周长;
(3)设EF、AD相较于N,若AE=3,EF=7,求DN的长.
25.(14分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0). (1)求该抛物线所对应的函数解析式;
(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上. ①求四边形ACFD的面积;
②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、
DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.
..
..
广东省广州市天河区中考数学一模试卷
参考答案与试题解析
一.选择题(共10小题,满分30分,每小题3分) 1.【分析】利用平方根定义计算即可得到结果. 【解答】解:∵(±3)2=9, ∴9的平方根是±3, 故选:A.
【点评】此题考查了平方根,熟练掌握平方根定义是解本题的关键.
2.【分析】分别根据合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则对各选项进行逐一判断即可.
【解答】解:A、3a3与2a2不是同类项,不能合并,故本选项错误;
B、2+=3,故本选项正确;
C、a4?a2=a6,故本选项错误; D、(ab2)3=a3b6,故本选项错误.
故选:B.
【点评】本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
3.【分析】根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,即﹣1及其右边的部分.
【解答】解:两个不等式的解集的公共部分是:﹣1及其右边的部分.即大于等于﹣1的数组成的集合. 故选:A.
【点评】本题考查了不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
4.【分析】先过E作EG∥AB,根据平行线的性质即可得到∠ABE+∠BED+∠CDE=360°,再根据DE⊥BE,
BF,DF分别为∠ABE,∠CDE的角平分线,即可得出∠FBE+∠FDE=135°,最后根据四边形内角和进行计
算即可.
【解答】解:如图所示,过E作EG∥AB,
∵AB∥CD,
..
..
∴EG∥CD,
∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°, ∴∠ABE+∠BED+∠CDE=360°,
又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,
∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,
∴四边形BEDF中,∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°. 故选:D.
【点评】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.
5.【分析】根据从正面看得到的图形是主视图,可得答案.
【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意, 故选:D.
【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.
6.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数. 【解答】解:将数据重新排列为17、18、18、20、20、20、23, 所以这组数据的众数为20分、中位数为20分, 故选:D.
【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.
7.【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:队的个数×(队的个数﹣1)=30,把相关数值代入即可. 【解答】解:设邀请x个球队参加比赛, 根据题意可列方程为:x(x﹣1)=30. 故选:A.
【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.
8.【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.
【解答】解:∵在热气球C处测得地面B点的俯角分别为45°, ∴BD=CD=100米,
∵在热气球C处测得地面A点的俯角分别为30°, ∴AC=2×100=200米,
..
..
∴AD==100米,
)米,
∴AB=AD+BD=100+100故选:D.
=100(1+
【点评】本题考查了解直角三角形的应用﹣﹣仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.
9.【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2
,故OD=4﹣2
,即B′点的坐标为(2,
).
【解答】解:过点B′作B′D⊥OC ∵∠CPB=60°,CB′=OC=OA=4 ∴∠B′CD=30°,B′D=2 根据勾股定理得DC=2∴OD=4﹣2故选:C.
)
,即B′点的坐标为(2,
【点评】主要考查了图形的翻折变换和正方形的性质,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理.
10.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH?BG,利用方程即可求出BH,然后又因
OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.
【解答】解:∵△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D ∴连接OE、OF,由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90° ∴OECF是正方形
∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF ∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a ∵由切割线定理可得BF2=BH?BG ∴a2=BH(BH+a) ∴BH=
或BH=
(舍去)
..
共分享92篇相关文档