云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 7微分方程数值解课件-11

7微分方程数值解课件-11

  • 62 次阅读
  • 3 次下载
  • 2025/5/4 20:37:58

? 微分方程离散化方法主要有

数值微分法,数值积分法和Taylor展开法。

? 初值问题化为差分方程的方法

1. 用离散方法去掉方程中的导数y?得到近似离散化方程; 2. 在近似离散化方程中用yk代替y(xk); 3. 在近似离散化方程中将近似号“?”用等号“=”代替。

124

1) 数值微分法

由初值问题(6.1)有y'(xk)?f(xk,y(xk)),用数值微分的2点前差公式代替y'(xk),得近似离散化方程

y(xk?1)?y(xk)xk?1?xk?y'(xk)?f(xk,y(xk)) 记h?xk?1?xk,做yk?y(xk),“???h?f(xk,yk)”,得差分方程

yk?1?yk

写容易计算的形式

yk?1?yk?hf(xk,yk) (k?0,1,2,?,n?1) (6.2) (Euler公式)

由初值条件y?y(a)及式(6.2)可求出(6.1)的数值解y1,y2,?,yn。公式(6.2)是显式单步法。

0

125

2)数值积分法 在[xk,xk?1]上对y'?f(x,y)两边取定积分,得

y(xk?1)?y(xk)??xk?1xky'dx??xk?1xkf(x,y(x))dx

对右端积分采用梯形公式(数值积分公式)得近似离散化方程:

y(xk?1)?y(xk)?h2[f(xk,y(xk))?f(xk?1,y(xk?1))] 于是得到求初值问题(6.1)的梯形方法

yhk?1?yk?2[f(xk,yk)?f(xk?1,yk?1)] (k?0,1,?,n?1)

该公式是隐式单步法。

126

3)Taylor展开法

因为初值问题中函数f(x,y)是已知函数,由y??f(x,y),可以计算y'',y''',…, 于是有函数y?y(x)在xk处的Taylor展式

y(xk?1)?y(xh2k)?hy'(xk)?2!y''(xk)??(xhf(xh2?ydk)?k,y(xk))?2!dx[f(x,y(x))]x?xk??取上式右端前若干项,得近似离散化方程。 例如取前两项有

y(xk?1)?y(xk)?hf(xk,y(xk))

于是又得到Euler公式:yk?1?yk?hf(xk,yk)

127

搜索更多关于: 7微分方程数值解课件-11 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

? 微分方程离散化方法主要有 数值微分法,数值积分法和Taylor展开法。 ? 初值问题化为差分方程的方法 1. 用离散方法去掉方程中的导数y?得到近似离散化方程; 2. 在近似离散化方程中用yk代替y(xk); 3. 在近似离散化方程中将近似号“?”用等号“=”代替。 124 1) 数值微分法 由初值问题(6.1)有y'(xk)?f(xk,y(xk)),用数值微分的2点前差公式代替y'(xk),得近似离散化方程 y(xk?1)?y(xk)xk?1?xk?y'(xk)?f(xk,y(xk)) 记h?xk?1?xk,做yk?y(xk),“???h?f(xk,yk)”,得差分方程 yk

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com